Solving singular convolution equations using the inverse fast Fourier transform
Eduard Krajník; Vincente Montesinos; Peter Zizler; Václav Zizler
Applications of Mathematics (2012)
- Volume: 57, Issue: 5, page 543-550
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKrajník, Eduard, et al. "Solving singular convolution equations using the inverse fast Fourier transform." Applications of Mathematics 57.5 (2012): 543-550. <http://eudml.org/doc/247192>.
@article{Krajník2012,
abstract = {The inverse Fast Fourier Transform is a common procedure to solve a convolution equation provided the transfer function has no zeros on the unit circle. In our paper we generalize this method to the case of a singular convolution equation and prove that if the transfer function is a trigonometric polynomial with simple zeros on the unit circle, then this method can be extended.},
author = {Krajník, Eduard, Montesinos, Vincente, Zizler, Peter, Zizler, Václav},
journal = {Applications of Mathematics},
keywords = {singular convolution equations; fast Fourier transform; tempered distribution; polynomial transfer functions; simple zeros; singular convolution equation; fast Fourier transform; tempered distribution; polynomial transfer function},
language = {eng},
number = {5},
pages = {543-550},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solving singular convolution equations using the inverse fast Fourier transform},
url = {http://eudml.org/doc/247192},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Krajník, Eduard
AU - Montesinos, Vincente
AU - Zizler, Peter
AU - Zizler, Václav
TI - Solving singular convolution equations using the inverse fast Fourier transform
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 5
SP - 543
EP - 550
AB - The inverse Fast Fourier Transform is a common procedure to solve a convolution equation provided the transfer function has no zeros on the unit circle. In our paper we generalize this method to the case of a singular convolution equation and prove that if the transfer function is a trigonometric polynomial with simple zeros on the unit circle, then this method can be extended.
LA - eng
KW - singular convolution equations; fast Fourier transform; tempered distribution; polynomial transfer functions; simple zeros; singular convolution equation; fast Fourier transform; tempered distribution; polynomial transfer function
UR - http://eudml.org/doc/247192
ER -
References
top- Babuška, I., The Fourier transform in the theory of difference equations and its applications, Arch. Mech. 11 (1959), 349-381. (1959) Zbl0092.12201MR0115030
- Beals, R., Advanced Mathematical Analysis. GTM 12, Springer New York-Heidelberg-Berlin (1973). (1973) MR0530403
- Fisher, B., 10.1093/qmath/22.2.291, Q. J. Math. 22 (1971), 291-298. (1971) Zbl0213.13104MR0287308DOI10.1093/qmath/22.2.291
- Jarchow, H., Locally Convex Spaces, B. G. Teubner Stuttgart (1981). (1981) Zbl0466.46001MR0632257
- Rudin, W., Functional Analysis, McGraw-Hill New York (1973). (1973) Zbl0253.46001MR0365062
- Vitásek, E., Periodic distributions and discrete Fourier transforms, Pokroky mat., fyz. astronom. 54 (2009), 137-144 Czech. (2009)
- Walter, G. G., Wavelets and Other Orthogonal Systems with Applications, CRC Press Boca Raton (1994). (1994) Zbl0866.42022MR1300204
- Walsh, J. L., Sewell, W. E., 10.2307/2301660, Am. Math. Monthly 44 (1937), 155-160. (1937) Zbl0016.29901MR1523881DOI10.2307/2301660
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.