Tree algebras: An algebraic axiomatization of intertwining vertex operators
Archivum Mathematicum (2012)
- Volume: 048, Issue: 5, page 353-370
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKříž, Igor, and Xiu, Yang. "Tree algebras: An algebraic axiomatization of intertwining vertex operators." Archivum Mathematicum 048.5 (2012): 353-370. <http://eudml.org/doc/247244>.
@article{Kříž2012,
abstract = {We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over $\mathbb \{C\}$. We also show that the chiral WZW model of a simply connected simple compact Lie group gives rise to a tree algebra over $\mathbb \{Q\}$.},
author = {Kříž, Igor, Xiu, Yang},
journal = {Archivum Mathematicum},
keywords = {vertex algebra; Riemann-Hilbert correspondence; D-module; KZ-equations; WZW-model; vertex algebra; Riemann-Hilbert correspondence; D-module; KZ-equations; WZW-model},
language = {eng},
number = {5},
pages = {353-370},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Tree algebras: An algebraic axiomatization of intertwining vertex operators},
url = {http://eudml.org/doc/247244},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Kříž, Igor
AU - Xiu, Yang
TI - Tree algebras: An algebraic axiomatization of intertwining vertex operators
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 353
EP - 370
AB - We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over $\mathbb {C}$. We also show that the chiral WZW model of a simply connected simple compact Lie group gives rise to a tree algebra over $\mathbb {Q}$.
LA - eng
KW - vertex algebra; Riemann-Hilbert correspondence; D-module; KZ-equations; WZW-model; vertex algebra; Riemann-Hilbert correspondence; D-module; KZ-equations; WZW-model
UR - http://eudml.org/doc/247244
ER -
References
top- Beilinson, A., Drinfeld, V., Chiral algebras, Amer. Math. Soc. Colloq. Publ. 51 (2004). (2004) Zbl1138.17300MR2058353
- Borcherds, R. E., 10.1007/BF01232032, Invent. Math. 109 (1992), 405–444. (1992) Zbl0799.17014MR1172696DOI10.1007/BF01232032
- Borel, A. (ed.),, Algebraic D–modules, Perspective in Math., vol. 2, Academic Press, 1987. (1987) Zbl0642.32001MR0882000
- Deligne, P., Équations différentielles à points singuliers réguliers (French), Lecture Notes in Math., vol. 163, Springer Verlag, 1970. (1970) MR0417174
- Frenkel, I., Lepowsky, I., Meurman, A., Vertex operator algebras and the Monster, Academic Press, Boston, MA, 1988. (1988) Zbl0674.17001MR0996026
- Grauert, H., 10.1007/BF01351803, Math. Ann. 135 (1958), 263–273. (1958) Zbl0081.07401MR0098199DOI10.1007/BF01351803
- Griffin, P. A., Hernandez, O. F., 10.1142/S0217751X92000533, Internat. J. Modern Phys. A 7 (1992), 1233–1265. (1992) MR1146819DOI10.1142/S0217751X92000533
- Grothendieck, A., Esquisse d’un programme, Geometric Galois Actions (L.Schneps, Lochak, P., eds.), London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997. (1997) Zbl0901.14001MR1483107
- Hortsch, R., Kriz, I., Pultr, A., 10.1016/j.jalgebra.2010.05.012, J. Algebra 324 (7) (2010), 1731–1753. (2010) MR2673758DOI10.1016/j.jalgebra.2010.05.012
- Hu, P., Kriz, I., 10.4310/PAMQ.2005.v1.n3.a7, Pure Appl. Math. Q. 1 1 (3), part 2 (2005), 665–682. (2005) Zbl1149.55015MR2201329DOI10.4310/PAMQ.2005.v1.n3.a7
- Huang, Y. Z., Two-dimensional conformal geometry and vertex operator algebras, Prog. Math. 148, Birkhäuser, Boston, 1997. (1997) Zbl0884.17021MR1448404
- Huang, Y. Z., Generalized rationality and a “Jacobi identity" for intertwining operator algebras, Selecta Math. (N.S.) 6 (3) (2000), 22–267. (2000) Zbl1013.17026MR1817614
- Huang, Y. Z., 10.1142/S021919970500191X, Comm. Contemp. Math. 7 (2005), 649–706. (2005) MR2175093DOI10.1142/S021919970500191X
- Huang, Y. Z., Lepowsky, J., Tensor products of modules for a vertex operator algebra and vertex tensor categories, Lie theory and geometry, Prog. Math. 123, Birkhäuser, Boston, 1994, pp. 349–383. (1994) Zbl0848.17031MR1327541
- Huang, Y. Z., Lepowsky, J., 10.1215/S0012-7094-99-09905-2, Duke J. Math. 99 (1) (1999), 113–134. (1999) Zbl0953.17016MR1700743DOI10.1215/S0012-7094-99-09905-2
- Huang, Y.Z., Representations of vertex operator algebras and braided finite tensor categories, Vertex algebras and related areas, Contemp. Math. 497, Amer. Math. Soc., Providence, RI, 2009, pp. 97–111. (2009) MR2568402
- Segal, G., The definition of conformal field theory, Topology, geometry and quantum field theory, London Math. Soc. Lecture Ser. 308, Cambridge Univ. Press, Cambridge, 2004, preprint in the 1980's, pp. 421–577. (2004) MR2079383
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.