Tree algebras: An algebraic axiomatization of intertwining vertex operators

Igor Kříž; Yang Xiu

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 5, page 353-370
  • ISSN: 0044-8753

Abstract

top
We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over . We also show that the chiral WZW model of a simply connected simple compact Lie group gives rise to a tree algebra over .

How to cite

top

Kříž, Igor, and Xiu, Yang. "Tree algebras: An algebraic axiomatization of intertwining vertex operators." Archivum Mathematicum 048.5 (2012): 353-370. <http://eudml.org/doc/247244>.

@article{Kříž2012,
abstract = {We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over $\mathbb \{C\}$. We also show that the chiral WZW model of a simply connected simple compact Lie group gives rise to a tree algebra over $\mathbb \{Q\}$.},
author = {Kříž, Igor, Xiu, Yang},
journal = {Archivum Mathematicum},
keywords = {vertex algebra; Riemann-Hilbert correspondence; D-module; KZ-equations; WZW-model; vertex algebra; Riemann-Hilbert correspondence; D-module; KZ-equations; WZW-model},
language = {eng},
number = {5},
pages = {353-370},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Tree algebras: An algebraic axiomatization of intertwining vertex operators},
url = {http://eudml.org/doc/247244},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Kříž, Igor
AU - Xiu, Yang
TI - Tree algebras: An algebraic axiomatization of intertwining vertex operators
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 353
EP - 370
AB - We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over $\mathbb {C}$. We also show that the chiral WZW model of a simply connected simple compact Lie group gives rise to a tree algebra over $\mathbb {Q}$.
LA - eng
KW - vertex algebra; Riemann-Hilbert correspondence; D-module; KZ-equations; WZW-model; vertex algebra; Riemann-Hilbert correspondence; D-module; KZ-equations; WZW-model
UR - http://eudml.org/doc/247244
ER -

References

top
  1. Beilinson, A., Drinfeld, V., Chiral algebras, Amer. Math. Soc. Colloq. Publ. 51 (2004). (2004) Zbl1138.17300MR2058353
  2. Borcherds, R. E., 10.1007/BF01232032, Invent. Math. 109 (1992), 405–444. (1992) Zbl0799.17014MR1172696DOI10.1007/BF01232032
  3. Borel, A. (ed.),, Algebraic D–modules, Perspective in Math., vol. 2, Academic Press, 1987. (1987) Zbl0642.32001MR0882000
  4. Deligne, P., Équations différentielles à points singuliers réguliers (French), Lecture Notes in Math., vol. 163, Springer Verlag, 1970. (1970) MR0417174
  5. Frenkel, I., Lepowsky, I., Meurman, A., Vertex operator algebras and the Monster, Academic Press, Boston, MA, 1988. (1988) Zbl0674.17001MR0996026
  6. Grauert, H., 10.1007/BF01351803, Math. Ann. 135 (1958), 263–273. (1958) Zbl0081.07401MR0098199DOI10.1007/BF01351803
  7. Griffin, P. A., Hernandez, O. F., 10.1142/S0217751X92000533, Internat. J. Modern Phys. A 7 (1992), 1233–1265. (1992) MR1146819DOI10.1142/S0217751X92000533
  8. Grothendieck, A., Esquisse d’un programme, Geometric Galois Actions (L.Schneps, Lochak, P., eds.), London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997. (1997) Zbl0901.14001MR1483107
  9. Hortsch, R., Kriz, I., Pultr, A., 10.1016/j.jalgebra.2010.05.012, J. Algebra 324 (7) (2010), 1731–1753. (2010) MR2673758DOI10.1016/j.jalgebra.2010.05.012
  10. Hu, P., Kriz, I., 10.4310/PAMQ.2005.v1.n3.a7, Pure Appl. Math. Q. 1 1 (3), part 2 (2005), 665–682. (2005) Zbl1149.55015MR2201329DOI10.4310/PAMQ.2005.v1.n3.a7
  11. Huang, Y. Z., Two-dimensional conformal geometry and vertex operator algebras, Prog. Math. 148, Birkhäuser, Boston, 1997. (1997) Zbl0884.17021MR1448404
  12. Huang, Y. Z., Generalized rationality and a “Jacobi identity" for intertwining operator algebras, Selecta Math. (N.S.) 6 (3) (2000), 22–267. (2000) Zbl1013.17026MR1817614
  13. Huang, Y. Z., 10.1142/S021919970500191X, Comm. Contemp. Math. 7 (2005), 649–706. (2005) MR2175093DOI10.1142/S021919970500191X
  14. Huang, Y. Z., Lepowsky, J., Tensor products of modules for a vertex operator algebra and vertex tensor categories, Lie theory and geometry, Prog. Math. 123, Birkhäuser, Boston, 1994, pp. 349–383. (1994) Zbl0848.17031MR1327541
  15. Huang, Y. Z., Lepowsky, J., 10.1215/S0012-7094-99-09905-2, Duke J. Math. 99 (1) (1999), 113–134. (1999) Zbl0953.17016MR1700743DOI10.1215/S0012-7094-99-09905-2
  16. Huang, Y.Z., Representations of vertex operator algebras and braided finite tensor categories, Vertex algebras and related areas, Contemp. Math. 497, Amer. Math. Soc., Providence, RI, 2009, pp. 97–111. (2009) MR2568402
  17. Segal, G., The definition of conformal field theory, Topology, geometry and quantum field theory, London Math. Soc. Lecture Ser. 308, Cambridge Univ. Press, Cambridge, 2004, preprint in the 1980's, pp. 421–577. (2004) MR2079383

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.