Well-posedness of optimization problems and Hausdorff metric on partial maps
Alessandro Caterino; Rita Ceppitelli; Ľubica Holà
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 3, page 645-656
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCaterino, Alessandro, Ceppitelli, Rita, and Holà, Ľubica. "Well-posedness of optimization problems and Hausdorff metric on partial maps." Bollettino dell'Unione Matematica Italiana 9-B.3 (2006): 645-656. <http://eudml.org/doc/289639>.
@article{Caterino2006,
abstract = {The object of this paper is the Hausdorff metric topology on partial maps with closed domains. This topological space is denoted by $(\mathcal\{P\}, H_\rho)$. An equivalence of well-posedness of constrained continuous problems is proved. By using the completeness of the Hausdorff metric on the space of usco maps with moving domains, the complete metrizability of $(\mathcal\{P\}, H_\rho)$ is investigated.},
author = {Caterino, Alessandro, Ceppitelli, Rita, Holà, Ľubica},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {645-656},
publisher = {Unione Matematica Italiana},
title = {Well-posedness of optimization problems and Hausdorff metric on partial maps},
url = {http://eudml.org/doc/289639},
volume = {9-B},
year = {2006},
}
TY - JOUR
AU - Caterino, Alessandro
AU - Ceppitelli, Rita
AU - Holà, Ľubica
TI - Well-posedness of optimization problems and Hausdorff metric on partial maps
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/10//
PB - Unione Matematica Italiana
VL - 9-B
IS - 3
SP - 645
EP - 656
AB - The object of this paper is the Hausdorff metric topology on partial maps with closed domains. This topological space is denoted by $(\mathcal{P}, H_\rho)$. An equivalence of well-posedness of constrained continuous problems is proved. By using the completeness of the Hausdorff metric on the space of usco maps with moving domains, the complete metrizability of $(\mathcal{P}, H_\rho)$ is investigated.
LA - eng
UR - http://eudml.org/doc/289639
ER -
References
top- ABD-ALLAH, A., Partial maps in algebra and topology, Ph. D. thesis, University of Wales (1979).
- ABD-ALLAH, A. - BROWN, R., A compact-open topology on partial maps with open domains, J. London Math. Soc., 21 (1980), 480-486. Zbl0436.54012
- ATSUJI, M., Uniform continuity of continuous functions on metric spaces, Pacific J. Math., 8 (1958), 11-16. Zbl0082.16207
- BACK, K., Concepts of similarity for utility functions, J. Math. Econ., 15 (1986), 129-142. Zbl0606.90014
- BOOTH, P. I. - BROWN, R., Spaces of partial maps, fibred mapping spaces and the compact-open topology, Topology Appl., 8 (1978), 181-195. Zbl0373.54012
- BEER, G., Topologies on Closed and Closed Convex Sets, Kluwer (1993). Zbl0792.54008
- BEER, G., Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Amer. Math. Soc., 95 (1985), 653-658. Zbl0594.54007
- BEER, G. - DI CONCILIO, A., A generalization of boundedly compact metric spaces, Comment. Math. Univ. Carolinae, 32, 2 (1991), 361-367. Zbl0766.54028
- BRANDI, P. - CEPPITELLI, R., Existence, uniqueness and continuous dependence for hereditary differential equations, J. Diff. Equations, 81 (1989), 317-339. Zbl0709.34062
- BRANDI, P. - CEPPITELLI, R., A new graph topology. Connections with compact open topology, Appl. Analysis, 53 (1994), 185-196. Zbl0836.54010
- BRANDI, P. - CEPPITELLI, R., A hypertopology intended for functional differential equations, Appl. Analysis, 67 (1997), 73-88. Zbl0886.54009
- BRANDI, P. - CEPPITELLI, R. - HOLÀ, Ľ., Topological properties of a new graph topology, J. of Convex Analysis, 6, N. 1 (1999), 29-40. Zbl1122.54303
- BRANDI, P. - CEPPITELLI, R. - HOLÀ, Ľ., Kuratowski convergence on compacta and Hausdorff metric convergence on compacta, Comment. Math. Univ. Carolinae, 40, 2 (1999), 309-318. Zbl0976.54010
- BRANDI, P. - CEPPITELLI, R. - HOLÀ, Ľ., Boundedly UC spaces, Hypertopologies and well-posedness, Rapporto tecnico N. 13, Department of Mathematics and Informatics, University of Perugia (2001).
- CEPPITELLI, R. - FAINA, L., Differential equations with hereditary structure induced by a Volterra type property, Field Institute Communications, 29 (2001), 73-91. Zbl0988.34049
- CHRISTENSEN, J. P. R., Theorems of Namioka and R.E. Johnson type for upper semicontinuous and compact valued set-valued mappings, Proc. Amer. Math. Soc., 86 (1982), 649-655. Zbl0506.54016
- DI CONCILIO, A. - NAIMPALLY, S. A., Proximal set-open topologies, Boll. U.M.I., 8, 1B (2000), 173-191. Zbl0942.54012
- DI CONCILIO, A. - NAIMPALLY, S. A., Function space topologies on (partial) maps, Recent progress in function spaces, Quaderni di Matematica (G. DI MAIO and Ľ. HOLÀ eds.), 3 (1999).
- ENGELKING, R., General Topology, Polish Scientific Publishers, Warszaw, (1977).
- FILIPPOV, V. V., Basic topological structures of the theory of ordinary differential equations, Topology in Nonlinear Analysis, Banach Centrum Publications, 35 (1996), 171-192. Zbl0847.34009
- HOLÀ, Ľ., Hausdorff metric on the space of upper semicontinuous multifunctions, Rocky Mountain Journal of Mathematics, 22 (1992), 601-610. Zbl0795.54029
- HOLÀ, Ľ., Complete metrizability of generalized compact-open topology, Topology and its Applications, 91(1999), 159-167. Zbl0987.54032
- HOLÀ, Ľ. - HOLY, D., Further characterizations of boundedly UC spaces, Comment. Math. Univ. Carolinae, 34, 1 (1993), 175-183. Zbl0828.54016
- HOLÀ, Ľ. - ZSILINSZKY, L., Completeness properties of the generalized compact-open topology on partial functions with closed domains, Topology Appl., 110 (2001), 303-321. Zbl0974.54008
- HOLÀ, Ľ. - ZSILINSZKY, L., Completeness properties of the Vietoris topology on partial functions with compact domains, preprint. Zbl0974.54008
- KELLEY, J. L., General Topology, Van Nostrand Reinhold Company, (1955).
- KUNZI, H. P. - SHAPIRO, L. B., On simultaneous extension of continuous partial functions, Proc. Amer. Math. Soc., 125 (1997), 1853-1859. Zbl0863.54012
- KURATOWSKI, K., Sur l'espace des fonctions partielles, Ann. Mat. Pura Appl.40 (1955), 61-67. Zbl0065.34303
- LANGEN, K. J., Convergence of dynamic programming models, Mathematics of Operations research, 6 (1981), 493-512. Zbl0496.90085
- LEVINE, N., Remarks on uniform continuity in metric spaces, Amer. Math. Monthly, 67 (1979), 562-563. Zbl0100.18602
- NAGATA, J., On the uniform topology of bicompactifications, J. Inst. Polytech. Osaka City University, 1 (1950), 28-38. Zbl0041.51601
- NYIKOS, P. J. - ZSILINSZKY, L., Strong α-favorability of the (generalized) compactopen topology, Atti Sem. Mat. Fis. Univ. Modena, to appear.
- REVALSKI, J. P., Various aspects of well-posedness of optimization problems, in R. Lucchetti - J.P. Revalski (eds), «Recent developments in well-posed variational problems», Kluwer (1995), 229-256. Zbl0880.49012
- REVALSKI, J. P. - ZHIVKOV, N. V., Well-posed constrained optimization problems in metric spaces, J. Opt. Theory Appl., 76 (1993), 145-163. Zbl0798.49031
- SELL, G. R., On the Fundamental Theory of Ordinary Differential Equations, J. differential Equations, 1 (1965), 371-392. Zbl0151.10602
- TYKHONOV, A. N., On the stability of the functional optimization problems, USSR J. Comp. Math. Phys., 6 (1966), 631-634.
- WATERHOUSE, W., On UC spaces, Amer. Math. Mountly, 72 (1965), 634-635. Zbl0136.19802
- ZAREMBA, S. K., Sur certaines familles de courbes en relations avec la theorie des equations differentielles, Rocznik Polskiego Tow. Matemat., 15 (1936), 83-105. Zbl0017.39802
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.