On a class of locally Butler groups
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 4, page 597-600
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBican, Ladislav. "On a class of locally Butler groups." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 597-600. <http://eudml.org/doc/247294>.
@article{Bican1991,
abstract = {A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph _\omega $ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup _\{\alpha < \mu \}B_\alpha $ of pure subgroups $B_\alpha $ having countable typesets.},
author = {Bican, Ladislav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Butler group; generalized regular subgroup; torsion-free abelian group; Butler group; finite rank pure subgroup; smooth union; ascending chain of pure subgroups; typeset},
language = {eng},
number = {4},
pages = {597-600},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a class of locally Butler groups},
url = {http://eudml.org/doc/247294},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Bican, Ladislav
TI - On a class of locally Butler groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 597
EP - 600
AB - A torsionfree abelian group $B$ is called a Butler group if $Bext(B,T) = 0$ for any torsion group $T$. It has been shown in [DHR] that under $CH$ any countable pure subgroup of a Butler group of cardinality not exceeding $\aleph _\omega $ is again Butler. The purpose of this note is to show that this property has any Butler group which can be expressed as a smooth union $\cup _{\alpha < \mu }B_\alpha $ of pure subgroups $B_\alpha $ having countable typesets.
LA - eng
KW - Butler group; generalized regular subgroup; torsion-free abelian group; Butler group; finite rank pure subgroup; smooth union; ascending chain of pure subgroups; typeset
UR - http://eudml.org/doc/247294
ER -
References
top- Arnold D., Notes on Butler groups and balanced extensions, Boll. Un. Mat. Ital. A(6) 5 (1986), 175-184. (1986) Zbl0601.20050MR0850285
- Bican L., Splitting in abelian groups, Czech. Math. J. 28 (1978), 356-364. (1978) Zbl0421.20022MR0480778
- Bican L., Purely finitely generated groups, Comment. Math. Univ. Carolinae 21 (1980), 209-218. (1980) MR0580678
- Bican L., Salce L., HASH(0x91ad320), Infinite rank Butler groups, Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math., vol. 1006, Springer-Verlag, 1983, 171-189.
- Bican L., Salce L., Štěpán J., A characterization of countable Butler groups, Rend. Sem. Mat. Univ. Padova 74 (1985), 51-58. (1985) MR0818715
- Butler M.C.R., A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. 15 (1965), 680-698. (1965) Zbl0131.02501MR0218446
- Dugas M., On some subgroups of infinite rank Butler groups, Rend. Sem. Mat. Univ. Padova 79 (1988), 153-161. (1988) Zbl0667.20043MR0964027
- Dugas M., Hill P., Rangaswamy K.M., Infinite rank Butler groups II, Trans. Amer. Math. Soc. 320 (1990), 643-664. (1990) MR0963246
- Dugas M., Rangaswamy K.M., Infinite rank Butler groups,, Trans. Amer. Math. Soc. 305 (1988), 129-142. (1988) Zbl0641.20036MR0920150
- Fuchs L., Infinite Abelian groups, vol. I and II, Academic Press, New York, 1973 and 1977. Zbl0338.20063MR0255673
- Fuchs L., Infinite rank Butler groups, preprint.
- Fuchs L., Metelli C., Countable Butler groups, Contemporary Math., to appear. Zbl0769.20025MR1176115
- Fuchs L., Viljoen G., Note on the extensions of Butler groups, Bull. Austral. Math. Soc. 41 (1990), 117-122. (1990) MR1043972
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.