Σ s -products revisited

Reynaldo Rojas-Hernández

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 2, page 243-255
  • ISSN: 0010-2628

Abstract

top
We show that any Σ s -product of at most 𝔠 -many L Σ ( ω ) -spaces has the L Σ ( ω ) -property. This result generalizes some known results about L Σ ( ω ) -spaces. On the other hand, we prove that every Σ s -product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every Σ s -product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe property by condensations, Topology Proc. 42 (2012), 1–15]. Besides, we prove that if X is a simple Lindelöf Σ -space, then C p ( X ) has the Collins-Roscoe property.

How to cite

top

Rojas-Hernández, Reynaldo. "$\Sigma _s$-products revisited." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 243-255. <http://eudml.org/doc/270086>.

@article{Rojas2015,
abstract = {We show that any $\Sigma _s$-product of at most $\mathfrak \{c\}$-many $L\Sigma (\le \omega )$-spaces has the $L\Sigma (\le \omega )$-property. This result generalizes some known results about $L\Sigma (\le \omega )$-spaces. On the other hand, we prove that every $\Sigma _s$-product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every $\Sigma _s$-product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe property by condensations, Topology Proc. 42 (2012), 1–15]. Besides, we prove that if $X$ is a simple Lindelöf $\Sigma $-space, then $C_p(X)$ has the Collins-Roscoe property.},
author = {Rojas-Hernández, Reynaldo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\Sigma _s$-product; Lindelöf $\Sigma $-space; $L\Sigma (\le \omega )$-space; monotonically monolithic space; Collins-Roscoe space; function space; simple space},
language = {eng},
number = {2},
pages = {243-255},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\Sigma _s$-products revisited},
url = {http://eudml.org/doc/270086},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Rojas-Hernández, Reynaldo
TI - $\Sigma _s$-products revisited
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 243
EP - 255
AB - We show that any $\Sigma _s$-product of at most $\mathfrak {c}$-many $L\Sigma (\le \omega )$-spaces has the $L\Sigma (\le \omega )$-property. This result generalizes some known results about $L\Sigma (\le \omega )$-spaces. On the other hand, we prove that every $\Sigma _s$-product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every $\Sigma _s$-product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe property by condensations, Topology Proc. 42 (2012), 1–15]. Besides, we prove that if $X$ is a simple Lindelöf $\Sigma $-space, then $C_p(X)$ has the Collins-Roscoe property.
LA - eng
KW - $\Sigma _s$-product; Lindelöf $\Sigma $-space; $L\Sigma (\le \omega )$-space; monotonically monolithic space; Collins-Roscoe space; function space; simple space
UR - http://eudml.org/doc/270086
ER -

References

top
  1. Alas O., Tkachuk V., Wilson R., 10.1007/s10474-009-9034-9, Acta Math. Hungar. 125 (2009), no. 4, 369–385. Zbl1274.54043MR2564435DOI10.1007/s10474-009-9034-9
  2. Arhangel'skii A.V., Topological Function Spaces, Kluwer Acad. Publ., Dordrecht, 1992. MR1485266
  3. Collins P.J., Roscoe A.W., 10.1090/S0002-9939-1984-0733418-9, Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. Zbl0541.54034MR0733418DOI10.1090/S0002-9939-1984-0733418-9
  4. Engelking R., General Topology, second edition, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  5. Gruenhage G., Monotonically monolithic spaces, Corson compacts and D -spaces, Topology Appl. 159 (2012), 1559–1564. Zbl1241.54013MR2891421
  6. Guo H., Junnila H.J.K., 10.1016/j.topol.2011.06.053, Topology Appl. 158 (2011), 2111–2121. Zbl1244.54056MR2831896DOI10.1016/j.topol.2011.06.053
  7. Kubiś W., Okunev O., Szeptycki P.J., On some classes of Lindelöf Σ -spaces, Topology Appl. 153 (2006), 2574–2590. Zbl1102.54028MR2243735
  8. Molina Lara I., Okunev O., 10.2478/s11533-010-0039-y, Central European J. Math. 8 (2010), 754–762. Zbl1209.54005MR2671223DOI10.2478/s11533-010-0039-y
  9. Okunev O.G., 10.1016/0166-8641(93)90041-B, Topology Appl. 49 (1993), 149–166. Zbl0796.54026MR1206222DOI10.1016/0166-8641(93)90041-B
  10. Sokolov G.A., On some class of compact spaces lying in Σ -products, Comment. Math. Univ. Carolin. 25 (1984), no. 2, 219–231. MR0768809
  11. Tkačenko M.G., 𝒫 -approximable compact spaces, Comment. Math. Univ. Carolin. 32 (1991), 583–595. MR1159804
  12. Tkachuk V.V., A glance at compact spaces which map “nicely” onto the metrizable ones, Topology Proc. 19 (1994), 321–334. Zbl0854.54022MR1369767
  13. Tkachuk V.V., 10.1016/S0166-8641(99)00112-1, Topology Appl. 107 (2000), 297–305. MR1779816DOI10.1016/S0166-8641(99)00112-1
  14. Tkachuk V.V., Condensing function spaces into Σ -products of real lines, Houston J. Math. 33 (2007), no. 1, 209–228. Zbl1126.54012MR2287851
  15. Tkachuk V.V., Lifting the Collins-Roscoe property by condensations, Topology Proc. 42 (2012), 1–15. Zbl1280.54011MR2943585
  16. Tkachuk V.V., 10.1016/j.topol.2008.11.001, Topology Appl. 156 (2009), 840–846. Zbl1165.54009MR2492968DOI10.1016/j.topol.2008.11.001
  17. Tkachuk V.V., 10.1216/RMJ-2013-43-1-373, Rocky Mountain J. Math. 43 (2013), 373–384. MR3065471DOI10.1216/RMJ-2013-43-1-373
  18. Tkachuk V.V., 10.1016/j.topol.2010.08.022, Topology Appl. 159 (2012), 1529–1535. Zbl1245.54022MR2891418DOI10.1016/j.topol.2010.08.022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.