Σ s -products revisited

Reynaldo Rojas-Hernández

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 2, page 243-255
  • ISSN: 0010-2628

Abstract

top
We show that any Σ s -product of at most 𝔠 -many L Σ ( ω ) -spaces has the L Σ ( ω ) -property. This result generalizes some known results about L Σ ( ω ) -spaces. On the other hand, we prove that every Σ s -product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every Σ s -product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe property by condensations, Topology Proc. 42 (2012), 1–15]. Besides, we prove that if X is a simple Lindelöf Σ -space, then C p ( X ) has the Collins-Roscoe property.

How to cite

top

Rojas-Hernández, Reynaldo. "$\Sigma _s$-products revisited." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 243-255. <http://eudml.org/doc/270086>.

@article{Rojas2015,
abstract = {We show that any $\Sigma _s$-product of at most $\mathfrak \{c\}$-many $L\Sigma (\le \omega )$-spaces has the $L\Sigma (\le \omega )$-property. This result generalizes some known results about $L\Sigma (\le \omega )$-spaces. On the other hand, we prove that every $\Sigma _s$-product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every $\Sigma _s$-product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe property by condensations, Topology Proc. 42 (2012), 1–15]. Besides, we prove that if $X$ is a simple Lindelöf $\Sigma $-space, then $C_p(X)$ has the Collins-Roscoe property.},
author = {Rojas-Hernández, Reynaldo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\Sigma _s$-product; Lindelöf $\Sigma $-space; $L\Sigma (\le \omega )$-space; monotonically monolithic space; Collins-Roscoe space; function space; simple space},
language = {eng},
number = {2},
pages = {243-255},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\Sigma _s$-products revisited},
url = {http://eudml.org/doc/270086},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Rojas-Hernández, Reynaldo
TI - $\Sigma _s$-products revisited
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 243
EP - 255
AB - We show that any $\Sigma _s$-product of at most $\mathfrak {c}$-many $L\Sigma (\le \omega )$-spaces has the $L\Sigma (\le \omega )$-property. This result generalizes some known results about $L\Sigma (\le \omega )$-spaces. On the other hand, we prove that every $\Sigma _s$-product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every $\Sigma _s$-product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe property by condensations, Topology Proc. 42 (2012), 1–15]. Besides, we prove that if $X$ is a simple Lindelöf $\Sigma $-space, then $C_p(X)$ has the Collins-Roscoe property.
LA - eng
KW - $\Sigma _s$-product; Lindelöf $\Sigma $-space; $L\Sigma (\le \omega )$-space; monotonically monolithic space; Collins-Roscoe space; function space; simple space
UR - http://eudml.org/doc/270086
ER -

References

top
  1. Alas O., Tkachuk V., Wilson R., 10.1007/s10474-009-9034-9, Acta Math. Hungar. 125 (2009), no. 4, 369–385. Zbl1274.54043MR2564435DOI10.1007/s10474-009-9034-9
  2. Arhangel'skii A.V., Topological Function Spaces, Kluwer Acad. Publ., Dordrecht, 1992. MR1485266
  3. Collins P.J., Roscoe A.W., 10.1090/S0002-9939-1984-0733418-9, Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. Zbl0541.54034MR0733418DOI10.1090/S0002-9939-1984-0733418-9
  4. Engelking R., General Topology, second edition, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  5. Gruenhage G., Monotonically monolithic spaces, Corson compacts and D -spaces, Topology Appl. 159 (2012), 1559–1564. Zbl1241.54013MR2891421
  6. Guo H., Junnila H.J.K., 10.1016/j.topol.2011.06.053, Topology Appl. 158 (2011), 2111–2121. Zbl1244.54056MR2831896DOI10.1016/j.topol.2011.06.053
  7. Kubiś W., Okunev O., Szeptycki P.J., On some classes of Lindelöf Σ -spaces, Topology Appl. 153 (2006), 2574–2590. Zbl1102.54028MR2243735
  8. Molina Lara I., Okunev O., 10.2478/s11533-010-0039-y, Central European J. Math. 8 (2010), 754–762. Zbl1209.54005MR2671223DOI10.2478/s11533-010-0039-y
  9. Okunev O.G., 10.1016/0166-8641(93)90041-B, Topology Appl. 49 (1993), 149–166. Zbl0796.54026MR1206222DOI10.1016/0166-8641(93)90041-B
  10. Sokolov G.A., On some class of compact spaces lying in Σ -products, Comment. Math. Univ. Carolin. 25 (1984), no. 2, 219–231. MR0768809
  11. Tkačenko M.G., 𝒫 -approximable compact spaces, Comment. Math. Univ. Carolin. 32 (1991), 583–595. MR1159804
  12. Tkachuk V.V., A glance at compact spaces which map “nicely” onto the metrizable ones, Topology Proc. 19 (1994), 321–334. Zbl0854.54022MR1369767
  13. Tkachuk V.V., 10.1016/S0166-8641(99)00112-1, Topology Appl. 107 (2000), 297–305. MR1779816DOI10.1016/S0166-8641(99)00112-1
  14. Tkachuk V.V., Condensing function spaces into Σ -products of real lines, Houston J. Math. 33 (2007), no. 1, 209–228. Zbl1126.54012MR2287851
  15. Tkachuk V.V., Lifting the Collins-Roscoe property by condensations, Topology Proc. 42 (2012), 1–15. Zbl1280.54011MR2943585
  16. Tkachuk V.V., 10.1016/j.topol.2008.11.001, Topology Appl. 156 (2009), 840–846. Zbl1165.54009MR2492968DOI10.1016/j.topol.2008.11.001
  17. Tkachuk V.V., 10.1216/RMJ-2013-43-1-373, Rocky Mountain J. Math. 43 (2013), 373–384. MR3065471DOI10.1216/RMJ-2013-43-1-373
  18. Tkachuk V.V., 10.1016/j.topol.2010.08.022, Topology Appl. 159 (2012), 1529–1535. Zbl1245.54022MR2891418DOI10.1016/j.topol.2010.08.022

NotesEmbed ?

top

You must be logged in to post comments.