Displaying similar documents to “ 𝒫 -approximable compact spaces”

A generalization of Čech-complete spaces and Lindelöf Σ -spaces

Aleksander V. Arhangel'skii (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The class of s -spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf p -spaces, metrizable spaces with the weight 2 ω , but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that s -spaces are in a duality with Lindelöf Σ -spaces: X is an s -space if and only if some (every) remainder of X in a compactification is a Lindelöf Σ -space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math....

Functional separability

Ronnie Levy, M. Matveev (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is functionally countable (FC) if for every continuous f : X , | f ( X ) | ω . The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, σ -products in 2 κ , and some L-spaces. We consider the following three versions of functional separability: X is 1-FS if it has a dense FC subspace; X is 2-FS if there is a dense subspace Y X such that for every continuous f : X , | f ( Y ) | ω ; X is 3-FS if for every continuous f : X , there is a dense subspace Y X such that | f ( Y ) | ω . We give examples...

Metrization of function spaces with the Fell topology

Hanbiao Yang (2012)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a Tychonoff space X , let C F ( X ) be the family of hypographs of all continuous maps from X to [ 0 , 1 ] endowed with the Fell topology. It is proved that X has a dense separable metrizable locally compact open subset if C F ( X ) is metrizable. Moreover, for a first-countable space X , C F ( X ) is metrizable if and only if X itself is a locally compact separable metrizable space. There exists a Tychonoff space X such that C F ( X ) is metrizable but X is not first-countable.