The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Characterization of globally Lipschitzian composition operators in the Banach space BV p 2 [ a , b ]

Uniformly bounded composition operators in the banach space of bounded (p, k)-variation in the sense of Riesz-Popoviciu

Francy Armao, Dorota Głazowska, Sergio Rivas, Jessica Rojas (2013)

Open Mathematics

Similarity:

We prove that if the composition operator F generated by a function f: [a, b] × ℝ → ℝ maps the space of bounded (p, k)-variation in the sense of Riesz-Popoviciu, p ≥ 1, k an integer, denoted by RV(p,k)[a, b], into itself and is uniformly bounded then RV(p,k)[a, b] satisfies the Matkowski condition.

Characterization of Globally Lipschitz Nemytskiĭ Operators Between Spaces of Set-Valued Functions of Bounded φ-Variation in the Sense of Riesz

N. Merentes, J. L. Sánchez Hernández (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let (X,∥·∥) and (Y,∥·∥) be two normed spaces and K be a convex cone in X. Let CC(Y) be the family of all non-empty convex compact subsets of Y. We consider the Nemytskiĭ operators, i.e. the composition operators defined by (Nu)(t) = H(t,u(t)), where H is a given set-valued function. It is shown that if the operator N maps the space R V φ ( [ a , b ] ; K ) into R W φ ( [ a , b ] ; C C ( Y ) ) (both are spaces of functions of bounded φ-variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form H(t,u(t))...

Curves in Banach spaces which allow a C 1 , BV parametrization or a parametrization with finite convexity

Jakub Duda, Luděk Zajíček (2013)

Czechoslovak Mathematical Journal

Similarity:

We give a complete characterization of those f : [ 0 , 1 ] X (where X is a Banach space) which allow an equivalent C 1 , BV parametrization (i.e., a C 1 parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for X = n . We present examples which show applicability of our characterizations. For example, we show that the C 1 , BV and C 2 parametrization problems are equivalent for X = but are not equivalent for X = 2 .