Displaying similar documents to “Characterization of globally Lipschitzian composition operators in the Banach space BV p 2 [ a , b ]

Uniformly bounded composition operators in the banach space of bounded (p, k)-variation in the sense of Riesz-Popoviciu

Francy Armao, Dorota Głazowska, Sergio Rivas, Jessica Rojas (2013)

Open Mathematics

Similarity:

We prove that if the composition operator F generated by a function f: [a, b] × ℝ → ℝ maps the space of bounded (p, k)-variation in the sense of Riesz-Popoviciu, p ≥ 1, k an integer, denoted by RV(p,k)[a, b], into itself and is uniformly bounded then RV(p,k)[a, b] satisfies the Matkowski condition.

Characterization of Globally Lipschitz Nemytskiĭ Operators Between Spaces of Set-Valued Functions of Bounded φ-Variation in the Sense of Riesz

N. Merentes, J. L. Sánchez Hernández (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let (X,∥·∥) and (Y,∥·∥) be two normed spaces and K be a convex cone in X. Let CC(Y) be the family of all non-empty convex compact subsets of Y. We consider the Nemytskiĭ operators, i.e. the composition operators defined by (Nu)(t) = H(t,u(t)), where H is a given set-valued function. It is shown that if the operator N maps the space R V φ ( [ a , b ] ; K ) into R W φ ( [ a , b ] ; C C ( Y ) ) (both are spaces of functions of bounded φ-variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form H(t,u(t))...

Curves in Banach spaces which allow a C 1 , BV parametrization or a parametrization with finite convexity

Jakub Duda, Luděk Zajíček (2013)

Czechoslovak Mathematical Journal

Similarity:

We give a complete characterization of those f : [ 0 , 1 ] X (where X is a Banach space) which allow an equivalent C 1 , BV parametrization (i.e., a C 1 parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for X = n . We present examples which show applicability of our characterizations. For example, we show that the C 1 , BV and C 2 parametrization problems are equivalent for X = but are not equivalent for X = 2 .