Natural affinors on higher order cotangent bundle

Jan Kurek

Archivum Mathematicum (1992)

  • Volume: 028, Issue: 3-4, page 175-180
  • ISSN: 0044-8753

Abstract

top
All natural affinors on the r -th order cotangent bundle T r * M are determined. Basic affinors of this type are the identity affinor id of T T r * M and the s -th power affinors Q M s : T T r * M V T r * M with s = 1 , , r defined by the s -th power transformations A s r , r of T r * M . An arbitrary natural affinor is a linear combination of the basic ones.

How to cite

top

Kurek, Jan. "Natural affinors on higher order cotangent bundle." Archivum Mathematicum 028.3-4 (1992): 175-180. <http://eudml.org/doc/247350>.

@article{Kurek1992,
abstract = {All natural affinors on the $r$-th order cotangent bundle $T^\{r*\}M$ are determined. Basic affinors of this type are the identity affinor id of $TT^\{r*\}M$ and the $s$-th power affinors $Q^s_M : TT^\{r*\}M \rightarrow VT^\{r*\}M$ with $s=1, \dots , r$ defined by the $s$-th power transformations $A^\{r,r\}_s$ of $T^\{r*\}M$. An arbitrary natural affinor is a linear combination of the basic ones.},
author = {Kurek, Jan},
journal = {Archivum Mathematicum},
keywords = {higher order cotangent bundle; natural affinor; natural affinors; cotangent bundle},
language = {eng},
number = {3-4},
pages = {175-180},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Natural affinors on higher order cotangent bundle},
url = {http://eudml.org/doc/247350},
volume = {028},
year = {1992},
}

TY - JOUR
AU - Kurek, Jan
TI - Natural affinors on higher order cotangent bundle
JO - Archivum Mathematicum
PY - 1992
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 028
IS - 3-4
SP - 175
EP - 180
AB - All natural affinors on the $r$-th order cotangent bundle $T^{r*}M$ are determined. Basic affinors of this type are the identity affinor id of $TT^{r*}M$ and the $s$-th power affinors $Q^s_M : TT^{r*}M \rightarrow VT^{r*}M$ with $s=1, \dots , r$ defined by the $s$-th power transformations $A^{r,r}_s$ of $T^{r*}M$. An arbitrary natural affinor is a linear combination of the basic ones.
LA - eng
KW - higher order cotangent bundle; natural affinor; natural affinors; cotangent bundle
UR - http://eudml.org/doc/247350
ER -

References

top
  1. Torsions of connections on some natural bundles, Diff. Geom. and Appl. 2 (1992), 1-16. (1992) MR1244453
  2. Natural Operations in Differential Geometry, (to appear). (to appear) MR1202431
  3. Natural transformations of higher order cotangent bundles functor, to appear in Ann. Polon. Math.. MR1215758

NotesEmbed ?

top

You must be logged in to post comments.