Natural affinors on higher order cotangent bundle
Archivum Mathematicum (1992)
- Volume: 028, Issue: 3-4, page 175-180
 - ISSN: 0044-8753
 
Access Full Article
topAbstract
topHow to cite
topKurek, Jan. "Natural affinors on higher order cotangent bundle." Archivum Mathematicum 028.3-4 (1992): 175-180. <http://eudml.org/doc/247350>.
@article{Kurek1992,
	abstract = {All natural affinors on the $r$-th order cotangent bundle $T^\{r*\}M$ are determined. Basic affinors of this type are the identity affinor id of $TT^\{r*\}M$ and the $s$-th power affinors $Q^s_M : TT^\{r*\}M \rightarrow VT^\{r*\}M$ with $s=1, \dots , r$ defined by the $s$-th power transformations $A^\{r,r\}_s$ of $T^\{r*\}M$. An arbitrary natural affinor is a linear combination of the basic ones.},
	author = {Kurek, Jan},
	journal = {Archivum Mathematicum},
	keywords = {higher order cotangent bundle; natural affinor; natural affinors; cotangent bundle},
	language = {eng},
	number = {3-4},
	pages = {175-180},
	publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
	title = {Natural affinors on higher order cotangent bundle},
	url = {http://eudml.org/doc/247350},
	volume = {028},
	year = {1992},
}
TY  - JOUR
AU  - Kurek, Jan
TI  - Natural affinors on higher order cotangent bundle
JO  - Archivum Mathematicum
PY  - 1992
PB  - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL  - 028
IS  - 3-4
SP  - 175
EP  - 180
AB  - All natural affinors on the $r$-th order cotangent bundle $T^{r*}M$ are determined. Basic affinors of this type are the identity affinor id of $TT^{r*}M$ and the $s$-th power affinors $Q^s_M : TT^{r*}M \rightarrow VT^{r*}M$ with $s=1, \dots , r$ defined by the $s$-th power transformations $A^{r,r}_s$ of $T^{r*}M$. An arbitrary natural affinor is a linear combination of the basic ones.
LA  - eng
KW  - higher order cotangent bundle; natural affinor; natural affinors; cotangent bundle
UR  - http://eudml.org/doc/247350
ER  - 
References
topCitations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.