The canonical tensor fields of type ( 1 , 1 ) on ( J r ( 2 T * ) ) *

Paweł Michalec

Archivum Mathematicum (2003)

  • Volume: 039, Issue: 3, page 247-256
  • ISSN: 0044-8753

Abstract

top
We prove that every natural affinor on ( J r ( 2 T * ) ) * ( M ) is proportional to the identity affinor if dim M 3 .

How to cite

top

Michalec, Paweł. "The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$." Archivum Mathematicum 039.3 (2003): 247-256. <http://eudml.org/doc/249122>.

@article{Michalec2003,
abstract = {We prove that every natural affinor on $(J^r( \odot ^2 T^\{\ast \}))^\{\ast \}(M)$ is proportional to the identity affinor if dim$M\ge 3$.},
author = {Michalec, Paweł},
journal = {Archivum Mathematicum},
keywords = {natural affinor; natural bundle; natural transformation; natural affinor; natural bundle; natural transformation},
language = {eng},
number = {3},
pages = {247-256},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^\{\ast \}))^\{\ast \}$},
url = {http://eudml.org/doc/249122},
volume = {039},
year = {2003},
}

TY - JOUR
AU - Michalec, Paweł
TI - The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$
JO - Archivum Mathematicum
PY - 2003
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 039
IS - 3
SP - 247
EP - 256
AB - We prove that every natural affinor on $(J^r( \odot ^2 T^{\ast }))^{\ast }(M)$ is proportional to the identity affinor if dim$M\ge 3$.
LA - eng
KW - natural affinor; natural bundle; natural transformation; natural affinor; natural bundle; natural transformation
UR - http://eudml.org/doc/249122
ER -

References

top
  1. Doupovec M., Kolář I., Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205-209. (1991) MR1189217
  2. Doupovec M., Kurek J., Torsions of connections of higher order cotangent bundles, Czech. Math. J. (to appear). MR2018842
  3. Gancarzewicz J., Kolář I., Natural affinors on the extended r -th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo, 1993, 95-100. (1993) MR1246623
  4. Kolář I., Modugno M., Torsion of connections on some natural bundles, Diff. Geom. and Appl. 2(1992), 1-16. (1992) MR1244453
  5. Kolář. I., Michor P. W., Slovák J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin 1993. (1993) Zbl0782.53013MR1202431
  6. Kurek J., Natural affinors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992), 175-180. (1992) MR1222284
  7. Mikulski W. M., The natural affinors on dual r-jet prolongation of bundles of 2-forms, Ann. UMCS Lublin 2002, (to appear). MR1984608
  8. Mikulski W. M., Natural affinors on r -jet prolongation of the tangant bundle, Arch. Math. (Brno) 34 (2) (1998). 321-328. (1998) MR1645340
  9. Mikulski W. M., The natural affinors on k T ( k ) , Note di Matematica vol. 19-n. 2. (1999), 269-274. (19-n) MR1816880
  10. Mikulski W. M., The natural affinors on generalized higher order tangent bundles, Rend. Mat. Roma vol. 21. (2001). (to appear). Zbl1048.58004MR1884952
  11. Mikulski W. M., Natural affinors on ( J r , s , q ( · , 𝐑 1 , 1 ) 0 ) * , Coment. Math. Carolinae 42 (2001), (to appear). Zbl1050.58004MR1883375
  12. Zajtz A., On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988), 169-178. (1988) MR0983220

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.