Approximation of 𝐑 X with countable subsets of C p ( X ) and calibers of the space C p ( X )

Vladimir Vladimirovich Tkachuk

Commentationes Mathematicae Universitatis Carolinae (1986)

  • Volume: 027, Issue: 2, page 267-276
  • ISSN: 0010-2628

How to cite

top

Tkachuk, Vladimir Vladimirovich. "Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$." Commentationes Mathematicae Universitatis Carolinae 027.2 (1986): 267-276. <http://eudml.org/doc/17457>.

@article{Tkachuk1986,
author = {Tkachuk, Vladimir Vladimirovich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {-closure; Shanin property; pseudocharacter; pointwise convergence; countable approximation; caliber; regular uncountable cardinal},
language = {eng},
number = {2},
pages = {267-276},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Approximation of $\{\bf R\}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$},
url = {http://eudml.org/doc/17457},
volume = {027},
year = {1986},
}

TY - JOUR
AU - Tkachuk, Vladimir Vladimirovich
TI - Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1986
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 027
IS - 2
SP - 267
EP - 276
LA - eng
KW - -closure; Shanin property; pseudocharacter; pointwise convergence; countable approximation; caliber; regular uncountable cardinal
UR - http://eudml.org/doc/17457
ER -

References

top
  1. M. E. RUDIN, Lectures on set theoretic topology, Conf. ser. in Math, 23, Amer. Math. Soc, Providence, 1975. (1975) Zbl0318.54001MR0367886
  2. A. B. AРХАНГЕЛЬСКИЙ, Cтроенийе и классификация топологицеских пространств и кардинальные инварианты, Уcпехи Матем. Наук 33, 6 (1978), 29-84. (1978) Zbl0473.57022MR0526012
  3. D. B. ŠAHMATOV, No upper bound for cardinalities of Tychonoff ccc spaces with a G δ -diagonal exists, (An answer to J. Ginsburg and R. G. Woods question.) Comment. Math. Univ. Carolinae 25 (1984), 731-746. (1984) MR0782022
  4. J. GINSBURG R. G. WOODS, A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64 (1977), 357-360. (1977) MR0461407
  5. V. V. USPENSKIJ, A large F σ -discrete Fréchet space having the Souslin property, Comment. Math. Univ. Carolinae 25 (1984), 257-260. (1984) MR0768812

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.