Four-dimensional curvature homogeneous spaces

Kouei Sekigawa; Hiroshi Suga; Lieven Vanhecke

Commentationes Mathematicae Universitatis Carolinae (1992)

  • Volume: 33, Issue: 2, page 261-268
  • ISSN: 0010-2628

Abstract

top
We prove that a four-dimensional, connected, simply connected and complete Riemannian manifold which is curvature homogeneous up to order two is a homogeneous Riemannian space.

How to cite

top

Sekigawa, Kouei, Suga, Hiroshi, and Vanhecke, Lieven. "Four-dimensional curvature homogeneous spaces." Commentationes Mathematicae Universitatis Carolinae 33.2 (1992): 261-268. <http://eudml.org/doc/247378>.

@article{Sekigawa1992,
abstract = {We prove that a four-dimensional, connected, simply connected and complete Riemannian manifold which is curvature homogeneous up to order two is a homogeneous Riemannian space.},
author = {Sekigawa, Kouei, Suga, Hiroshi, Vanhecke, Lieven},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Riemannian manifold; curvature homogeneous spaces; homogeneous spaces; locally homogeneous space; Singer's estimate},
language = {eng},
number = {2},
pages = {261-268},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Four-dimensional curvature homogeneous spaces},
url = {http://eudml.org/doc/247378},
volume = {33},
year = {1992},
}

TY - JOUR
AU - Sekigawa, Kouei
AU - Suga, Hiroshi
AU - Vanhecke, Lieven
TI - Four-dimensional curvature homogeneous spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1992
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 33
IS - 2
SP - 261
EP - 268
AB - We prove that a four-dimensional, connected, simply connected and complete Riemannian manifold which is curvature homogeneous up to order two is a homogeneous Riemannian space.
LA - eng
KW - Riemannian manifold; curvature homogeneous spaces; homogeneous spaces; locally homogeneous space; Singer's estimate
UR - http://eudml.org/doc/247378
ER -

References

top
  1. Bérard Bergery L., Les espaces homogènes riemanniens de dimension 4 , Géométrie riemannienne en dimension 4, Séminaire A. Besse, Cedic, Paris, 1981, 40-60. MR0769130
  2. Derdziński A., preprint, . 
  3. Gromov M., Partial differential equations, Ergeb. Math. Grenzgeb. 3 Folge 9, Springer-Verlag, Berlin, Heidelberg, New York, 1987. 
  4. Jensen G., Homogeneous Einstein spaces in dimension four, J. Differential Geom. 3 (1969), 309-349. (1969) MR0261487
  5. Kowalski O., A note to a theorem by K. Sekigawa, Comment. Math. Univ. Carolinae 30 (1989), 85-88. (1989) Zbl0679.53043MR0995705
  6. Kowalski O., Tricerri F., Vanhecke L., Exemples nouveaux de variétés riemanniennes non- homogènes dont le tenseur de courbure est celui d'un espace symétrique riemannien, C.R. Acad. Sci. Paris Sér. I 311 (1990), 355-360. (1990) MR1071643
  7. Kowalski O., Tricerri F., Vanhecke L., Curvature homogeneous Riemannian manifolds, J. Math. Pures Appl., to appear. Zbl0836.53029MR1193605
  8. Kowalski O., Tricerri F., Vanhecke L., Curvature homogeneous spaces with a solvable Lie group as homogeneous model, to appear. Zbl0762.53031MR1167378
  9. Sekigawa K., On the Riemannian manifolds of the form B × f F , Kōdai Math. Sem. Rep. 26 (1975), 343-347. (1975) Zbl0304.53019MR0438253
  10. Sekigawa K., On some 3 -dimensional curvature homogeneous spaces, Tensor N.S. 31 (1977), 87-97. (1977) Zbl0356.53016MR0464115
  11. Singer M.I., Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. (1960) Zbl0171.42503MR0131248
  12. Takagi H., On curvature homogeneity of Riemannian manifolds, Tôhoku Math. J. 26 (1974), 581-585. (1974) Zbl0302.53022MR0365417
  13. Tricerri F., Vanhecke L., Curvature homogeneous Riemannian manifolds, Ann. Sci. Ecole Norm. Sup. 22 (1989), 535-554. (1989) Zbl0698.53033MR1026749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.