Einstein-like semi-symmetric spaces

Eric Boeckx

Archivum Mathematicum (1993)

  • Volume: 029, Issue: 3-4, page 235-240
  • ISSN: 0044-8753

Abstract

top
One proves that semi-symmetric spaces with a Codazzi or Killing Ricci tensor are locally symmetric. Some applications of this result are given.

How to cite

top

Boeckx, Eric. "Einstein-like semi-symmetric spaces." Archivum Mathematicum 029.3-4 (1993): 235-240. <http://eudml.org/doc/247452>.

@article{Boeckx1993,
abstract = {One proves that semi-symmetric spaces with a Codazzi or Killing Ricci tensor are locally symmetric. Some applications of this result are given.},
author = {Boeckx, Eric},
journal = {Archivum Mathematicum},
keywords = {semi-symmetric spaces; Killing and Codazzi Ricci tensor; locally symmetric spaces; spaces with volume-preserving geodesic symmetries; C-spaces; Osserman spaces; de Rham product; locally symmetric spaces; Ricci tensor; volume- preserving geodesic symmetries; Jacobi operators; Osserman spaces},
language = {eng},
number = {3-4},
pages = {235-240},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Einstein-like semi-symmetric spaces},
url = {http://eudml.org/doc/247452},
volume = {029},
year = {1993},
}

TY - JOUR
AU - Boeckx, Eric
TI - Einstein-like semi-symmetric spaces
JO - Archivum Mathematicum
PY - 1993
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 029
IS - 3-4
SP - 235
EP - 240
AB - One proves that semi-symmetric spaces with a Codazzi or Killing Ricci tensor are locally symmetric. Some applications of this result are given.
LA - eng
KW - semi-symmetric spaces; Killing and Codazzi Ricci tensor; locally symmetric spaces; spaces with volume-preserving geodesic symmetries; C-spaces; Osserman spaces; de Rham product; locally symmetric spaces; Ricci tensor; volume- preserving geodesic symmetries; Jacobi operators; Osserman spaces
UR - http://eudml.org/doc/247452
ER -

References

top
  1. Symmetric-like Riemannian manifolds and geodesic symmetries, preprint. MR1331561
  2. Two natural generalizations of locally symmetric spaces, Diff. Geom. Appl. 2 (1992), 57-80. (1992) MR1244456
  3. Einstein manifolds, Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. Zbl1147.53001MR0867684
  4. Asymptotically foliated semi-symmetric spaces, in preparation. Zbl0846.53031
  5. Non-homogeneous relatives of symmetric spaces, Diff. Geom. Appl. (to appear). (to appear) 
  6. Leçons sur la géométrie des espaces de Riemann, 2nd edition, Paris, 1946. (1946) Zbl0060.38101MR0020842
  7. Natural generalizations of locally symmetric spaces, Indian J. Pure Appl. Math. (to appear). (to appear) Zbl0772.53029MR1218533
  8. Divergence-preserving geodesic symmetries, J. Diff. Geom. 3 (1969), 467-476. (1969) MR0262969
  9. Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, preprint. MR1348819
  10. Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. (1978) Zbl0378.53018MR0505561
  11. Foundations of differential geometry I, II, Interscience Publishers, New York, 1963, 1969. (1963, 1969) MR0152974
  12. Spaces with volume-preserving geodesic symmetries and related classes of Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale Settembre (1983), 131–158. (1983) MR0829002
  13. An explicit classification of 3-dimensional Riemannian spaces satisfying R ( X , Y ) · R = 0 , preprint. MR1408298
  14. Curvature in the eighties, Amer. Math. Monthly 97 (1990), 731-756. (1990) Zbl0722.53001MR1072814
  15. Geodesic maps on Riemannian spaces, (Russian), Publishing House “Nauka" Moscow, 1979. MR0552022
  16. Structure theorems on Riemannian manifolds satisfying R ( X , Y ) · R = 0 , I,Local version, J. Diff. Geom. 17 (1982), 531-582. (1982) MR0683165
  17. Structure theorems on Riemannian manifolds satisfying R ( X , Y ) · R = 0 , II, Global versions, Geom. Dedicata 19 (1985), 65-108. (1985) MR0797152
  18. Some solved and unsolved problems about harmonic and commutative spaces, Bull. Soc. Math. Belg., Sér. B 34 (1982), 1-24. (1982) Zbl0518.53042MR0683378
  19. Geometry in normal and tubular neighborhoods, Lecture Notes, Proc. Workshop on Differential Geometry and Topology, Cala Gonone (Sardinia), Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al Vol. 58 (1988), 73-176. (1988) MR1122858

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.