Conformally flat semi-symmetric spaces

Giovanni Calvaruso

Archivum Mathematicum (2005)

  • Volume: 041, Issue: 1, page 27-36
  • ISSN: 0044-8753

Abstract

top
We obtain the complete classification of conformally flat semi-symmetric spaces.

How to cite

top

Calvaruso, Giovanni. "Conformally flat semi-symmetric spaces." Archivum Mathematicum 041.1 (2005): 27-36. <http://eudml.org/doc/249483>.

@article{Calvaruso2005,
abstract = {We obtain the complete classification of conformally flat semi-symmetric spaces.},
author = {Calvaruso, Giovanni},
journal = {Archivum Mathematicum},
keywords = {conformally flat manifolds; semi-symmetric spaces; semi-symmetric space},
language = {eng},
number = {1},
pages = {27-36},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Conformally flat semi-symmetric spaces},
url = {http://eudml.org/doc/249483},
volume = {041},
year = {2005},
}

TY - JOUR
AU - Calvaruso, Giovanni
TI - Conformally flat semi-symmetric spaces
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 1
SP - 27
EP - 36
AB - We obtain the complete classification of conformally flat semi-symmetric spaces.
LA - eng
KW - conformally flat manifolds; semi-symmetric spaces; semi-symmetric space
UR - http://eudml.org/doc/249483
ER -

References

top
  1. Boeckx E., Einstein-like semi-symmetric spaces, Arch. Math. (Brno) 29 (1993), 235–240. (1993) Zbl0807.53041MR1263125
  2. Boeckx E., Calvaruso G., When is the unit tangent sphere bundle semi-symmetric?, preprint 2002. Zbl1076.53032MR2075771
  3. Boeckx E., Kowalski O., and Vanhecke L., Riemannian manifolds of conullity two, World Scientific 1996. (1996) MR1462887
  4. Calvaruso G., Vanhecke L., Semi-symmetric ball-homogeneous spaces and a volume conjecture, Bull. Austral. Math. Soc. 57 (1998), 109–115. (1998) Zbl0903.53031MR1623824
  5. Hashimoto N., Sekizawa M., Three-dimensional conformally flat pseudo-symmetric spaces of constant type, Arch. Math. (Brno) 36 (2000), 279–286. Zbl1054.53060MR1811172
  6. Kurita M., On the holonomy group of the conformally flat Riemannian manifold, Nagoya Math. J. 9 (1975), 161–171. (1975) MR0074050
  7. Ryan P., A note on conformally flat spaces with constant scalar curvature, Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971, 2 (1972), 115–124. (1971) MR0487882
  8. Szabó Y. I., Structure theorems on Riemannian manifolds satisfying R ( X , Y ) · R = 0 , I, the local version, J. Differential Geom. 17 (1982), 531–582. (1982) MR0683165
  9. Takagi H., An example of Riemannian manifold satisfying R ( X , Y ) · R but not R = 0 , Tôhoku Math. J. 24 (1972), 105–108. (1972) MR0319109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.