Semi-symmetric four dimensional neutral Lie groups

Ali Haji-Badali; Amirhesam Zaeim

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 393-410
  • ISSN: 0011-4642

Abstract

top
The present paper is concerned with obtaining a classification regarding to four-dimensional semi-symmetric neutral Lie groups. Moreover, we discuss some geometric properties of these spaces. We exhibit a rich class of non-Einstein Ricci soliton examples.

How to cite

top

Haji-Badali, Ali, and Zaeim, Amirhesam. "Semi-symmetric four dimensional neutral Lie groups." Czechoslovak Mathematical Journal 70.2 (2020): 393-410. <http://eudml.org/doc/296946>.

@article{Haji2020,
abstract = {The present paper is concerned with obtaining a classification regarding to four-dimensional semi-symmetric neutral Lie groups. Moreover, we discuss some geometric properties of these spaces. We exhibit a rich class of non-Einstein Ricci soliton examples.},
author = {Haji-Badali, Ali, Zaeim, Amirhesam},
journal = {Czechoslovak Mathematical Journal},
keywords = {semi-symmetric; Lie group; Ricci soliton},
language = {eng},
number = {2},
pages = {393-410},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Semi-symmetric four dimensional neutral Lie groups},
url = {http://eudml.org/doc/296946},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Haji-Badali, Ali
AU - Zaeim, Amirhesam
TI - Semi-symmetric four dimensional neutral Lie groups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 393
EP - 410
AB - The present paper is concerned with obtaining a classification regarding to four-dimensional semi-symmetric neutral Lie groups. Moreover, we discuss some geometric properties of these spaces. We exhibit a rich class of non-Einstein Ricci soliton examples.
LA - eng
KW - semi-symmetric; Lie group; Ricci soliton
UR - http://eudml.org/doc/296946
ER -

References

top
  1. Arias-Marco, T., Kowalski, O., 10.1007/s10587-008-0014-y, Czech. Math. J. 133 (2008), 203-239. (2008) Zbl1174.53024MR2402535DOI10.1007/s10587-008-0014-y
  2. Bérard-Bérgery, L., Les espaces homogènes Riemanniens de dimension 4, Géométrie Riemannienne en Dimension 4. Séminaire Arthur Besse Cedic, Paris (1981), 40-60 French. (1981) Zbl0482.53036MR0769130
  3. Boeckx, E., Einstein-like semi-symmetric spaces, Arch. Math., Brno 29 (1993), 235-240. (1993) Zbl0807.53041MR1263125
  4. Boeckx, E., Calvaruso, G., 10.2748/tmj/1113246672, Tohoku Math. J., II. Ser. 56 (2004), 357-366. (2004) Zbl1076.53032MR2075771DOI10.2748/tmj/1113246672
  5. Boeckx, E., Kowalski, O., Vanhecke, L., 10.1142/9789812819970, World Scientific, Singapore (1996). (1996) Zbl0904.53006MR1462887DOI10.1142/9789812819970
  6. Calvaruso, G., 10.1007/s10474-008-7194-7, Acta Math. Hung. 121 (2008), 157-170. (2008) Zbl1199.53135MR2463255DOI10.1007/s10474-008-7194-7
  7. Calvaruso, G., 10.1007/s12188-009-0018-z, Abh. Math. Semin. Univ. Hamb. 79 (2009), 1-10. (2009) Zbl1175.53077MR2541339DOI10.1007/s12188-009-0018-z
  8. Calvaruso, G., Leo, B. De, 10.1007/s00009-010-0029-0, Mediterr. J. Math. 7 (2010), 89-100. (2010) Zbl1193.53146MR2645904DOI10.1007/s00009-010-0029-0
  9. Calvaruso, G., Fino, A., 10.4153/CJM-2011-091-1, Can. J. Math. 64 (2012), 778-804. (2012) Zbl1252.53056MR2957230DOI10.4153/CJM-2011-091-1
  10. Calvaruso, G., Fino, A., 10.1142/S0219887815500565, Int. J. Geom. Methods Mod. Phys. 12 (2015), Article ID 1550056, 21 pages. (2015) Zbl1405.53054MR3349925DOI10.1142/S0219887815500565
  11. Calvaruso, G., Vanhecke, L., 10.4171/ZAA/792, Z. Anal. Anwend. 16 (1997), 789-800. (1997) Zbl0892.53023MR1615680DOI10.4171/ZAA/792
  12. Calvaruso, G., Zaeim, A., Neutral metrics on four-dimensional Lie groups, J. Lie Theory 25 (2015), 1023-1044. (2015) Zbl1343.53071MR3345046
  13. Cao, H.-D., Recent progress on Ricci solitons, Recent advances in geometric analysis Y.-I. Lee et al. Advanced Lectures in Mathematics (ALM) 11, International Press, Somerville (2010), 1-38. (2010) Zbl1201.53046MR2648937
  14. Haji-Badali, A., Karami, R., Ricci solitons on four-dimensional neutral Lie groups, J. Lie Theory 27 (2017), 943-967. (2017) Zbl06843179MR3622327
  15. Jensen, G. R., 10.4310/jdg/1214429056, J. Differ. Geom. 3 (1969), 309-349. (1969) Zbl0194.53203MR0261487DOI10.4310/jdg/1214429056
  16. Karami, R., Zaeim, A., Haji-Badali, A., 10.1007/s10998-018-0262-z., Period. Math. Hung. 78 (2019), 58-78. (2019) Zbl07058278MR3919748DOI10.1007/s10998-018-0262-z.
  17. O'Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York (1983). (1983) Zbl0531.53051MR0719023
  18. Rahmani, S., 10.1016/0393-0440(92)90033-W, J. Geom. Phys. 9 (1992), 295-302 French. (1992) Zbl0752.53036MR1171140DOI10.1016/0393-0440(92)90033-W
  19. Sekigawa, K., On some 3-dimensional curvature homogeneous spaces, Tensor, New Ser. 31 (1977), 87-97. (1977) Zbl0356.53016MR0464115
  20. Szabo, Z. I., 10.4310/jdg/1214437486, J. Differ. Geom. 17 (1982), 531-582. (1982) Zbl0508.53025MR0683165DOI10.4310/jdg/1214437486
  21. Takagi, H., 10.2748/tmj/1178241595, Tohoku Math. J. 24 (1972), 105-108. (1972) Zbl0237.53041MR0319109DOI10.2748/tmj/1178241595
  22. Zaeim, A., Karami, R., 10.1007/s00574-018-0097-5, Bull. Braz. Math. Soc. (N.S.) 50 (2019), 167-186. (2019) Zbl07068771MR3935062DOI10.1007/s00574-018-0097-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.