Semi-symmetric four dimensional neutral Lie groups
Ali Haji-Badali; Amirhesam Zaeim
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 393-410
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHaji-Badali, Ali, and Zaeim, Amirhesam. "Semi-symmetric four dimensional neutral Lie groups." Czechoslovak Mathematical Journal 70.2 (2020): 393-410. <http://eudml.org/doc/296946>.
@article{Haji2020,
abstract = {The present paper is concerned with obtaining a classification regarding to four-dimensional semi-symmetric neutral Lie groups. Moreover, we discuss some geometric properties of these spaces. We exhibit a rich class of non-Einstein Ricci soliton examples.},
author = {Haji-Badali, Ali, Zaeim, Amirhesam},
journal = {Czechoslovak Mathematical Journal},
keywords = {semi-symmetric; Lie group; Ricci soliton},
language = {eng},
number = {2},
pages = {393-410},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Semi-symmetric four dimensional neutral Lie groups},
url = {http://eudml.org/doc/296946},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Haji-Badali, Ali
AU - Zaeim, Amirhesam
TI - Semi-symmetric four dimensional neutral Lie groups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 393
EP - 410
AB - The present paper is concerned with obtaining a classification regarding to four-dimensional semi-symmetric neutral Lie groups. Moreover, we discuss some geometric properties of these spaces. We exhibit a rich class of non-Einstein Ricci soliton examples.
LA - eng
KW - semi-symmetric; Lie group; Ricci soliton
UR - http://eudml.org/doc/296946
ER -
References
top- Arias-Marco, T., Kowalski, O., 10.1007/s10587-008-0014-y, Czech. Math. J. 133 (2008), 203-239. (2008) Zbl1174.53024MR2402535DOI10.1007/s10587-008-0014-y
- Bérard-Bérgery, L., Les espaces homogènes Riemanniens de dimension 4, Géométrie Riemannienne en Dimension 4. Séminaire Arthur Besse Cedic, Paris (1981), 40-60 French. (1981) Zbl0482.53036MR0769130
- Boeckx, E., Einstein-like semi-symmetric spaces, Arch. Math., Brno 29 (1993), 235-240. (1993) Zbl0807.53041MR1263125
- Boeckx, E., Calvaruso, G., 10.2748/tmj/1113246672, Tohoku Math. J., II. Ser. 56 (2004), 357-366. (2004) Zbl1076.53032MR2075771DOI10.2748/tmj/1113246672
- Boeckx, E., Kowalski, O., Vanhecke, L., 10.1142/9789812819970, World Scientific, Singapore (1996). (1996) Zbl0904.53006MR1462887DOI10.1142/9789812819970
- Calvaruso, G., 10.1007/s10474-008-7194-7, Acta Math. Hung. 121 (2008), 157-170. (2008) Zbl1199.53135MR2463255DOI10.1007/s10474-008-7194-7
- Calvaruso, G., 10.1007/s12188-009-0018-z, Abh. Math. Semin. Univ. Hamb. 79 (2009), 1-10. (2009) Zbl1175.53077MR2541339DOI10.1007/s12188-009-0018-z
- Calvaruso, G., Leo, B. De, 10.1007/s00009-010-0029-0, Mediterr. J. Math. 7 (2010), 89-100. (2010) Zbl1193.53146MR2645904DOI10.1007/s00009-010-0029-0
- Calvaruso, G., Fino, A., 10.4153/CJM-2011-091-1, Can. J. Math. 64 (2012), 778-804. (2012) Zbl1252.53056MR2957230DOI10.4153/CJM-2011-091-1
- Calvaruso, G., Fino, A., 10.1142/S0219887815500565, Int. J. Geom. Methods Mod. Phys. 12 (2015), Article ID 1550056, 21 pages. (2015) Zbl1405.53054MR3349925DOI10.1142/S0219887815500565
- Calvaruso, G., Vanhecke, L., 10.4171/ZAA/792, Z. Anal. Anwend. 16 (1997), 789-800. (1997) Zbl0892.53023MR1615680DOI10.4171/ZAA/792
- Calvaruso, G., Zaeim, A., Neutral metrics on four-dimensional Lie groups, J. Lie Theory 25 (2015), 1023-1044. (2015) Zbl1343.53071MR3345046
- Cao, H.-D., Recent progress on Ricci solitons, Recent advances in geometric analysis Y.-I. Lee et al. Advanced Lectures in Mathematics (ALM) 11, International Press, Somerville (2010), 1-38. (2010) Zbl1201.53046MR2648937
- Haji-Badali, A., Karami, R., Ricci solitons on four-dimensional neutral Lie groups, J. Lie Theory 27 (2017), 943-967. (2017) Zbl06843179MR3622327
- Jensen, G. R., 10.4310/jdg/1214429056, J. Differ. Geom. 3 (1969), 309-349. (1969) Zbl0194.53203MR0261487DOI10.4310/jdg/1214429056
- Karami, R., Zaeim, A., Haji-Badali, A., 10.1007/s10998-018-0262-z., Period. Math. Hung. 78 (2019), 58-78. (2019) Zbl07058278MR3919748DOI10.1007/s10998-018-0262-z.
- O'Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York (1983). (1983) Zbl0531.53051MR0719023
- Rahmani, S., 10.1016/0393-0440(92)90033-W, J. Geom. Phys. 9 (1992), 295-302 French. (1992) Zbl0752.53036MR1171140DOI10.1016/0393-0440(92)90033-W
- Sekigawa, K., On some 3-dimensional curvature homogeneous spaces, Tensor, New Ser. 31 (1977), 87-97. (1977) Zbl0356.53016MR0464115
- Szabo, Z. I., 10.4310/jdg/1214437486, J. Differ. Geom. 17 (1982), 531-582. (1982) Zbl0508.53025MR0683165DOI10.4310/jdg/1214437486
- Takagi, H., 10.2748/tmj/1178241595, Tohoku Math. J. 24 (1972), 105-108. (1972) Zbl0237.53041MR0319109DOI10.2748/tmj/1178241595
- Zaeim, A., Karami, R., 10.1007/s00574-018-0097-5, Bull. Braz. Math. Soc. (N.S.) 50 (2019), 167-186. (2019) Zbl07068771MR3935062DOI10.1007/s00574-018-0097-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.