The existence of local homeomorphisms of degree n > 1 on local dendrites

Stanisław Miklos

Commentationes Mathematicae Universitatis Carolinae (1993)

  • Volume: 34, Issue: 2, page 363-366
  • ISSN: 0010-2628

Abstract

top
In this paper we characterize local dendrites which are the images of themselves under local homeomorphisms of degree n for each positive integer n .

How to cite

top

Miklos, Stanisław. "The existence of local homeomorphisms of degree $n>1$ on local dendrites." Commentationes Mathematicae Universitatis Carolinae 34.2 (1993): 363-366. <http://eudml.org/doc/247454>.

@article{Miklos1993,
abstract = {In this paper we characterize local dendrites which are the images of themselves under local homeomorphisms of degree $n$ for each positive integer $n$.},
author = {Miklos, Stanisław},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {local homeomorphism; map of degree $n$; continuum; local dendrite; dendrite; graph},
language = {eng},
number = {2},
pages = {363-366},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The existence of local homeomorphisms of degree $n>1$ on local dendrites},
url = {http://eudml.org/doc/247454},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Miklos, Stanisław
TI - The existence of local homeomorphisms of degree $n>1$ on local dendrites
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 2
SP - 363
EP - 366
AB - In this paper we characterize local dendrites which are the images of themselves under local homeomorphisms of degree $n$ for each positive integer $n$.
LA - eng
KW - local homeomorphism; map of degree $n$; continuum; local dendrite; dendrite; graph
UR - http://eudml.org/doc/247454
ER -

References

top
  1. Maćkowiak T., Local homeomorphisms onto tree-like continua, Colloq. Math. 38 (1977), 63-68. (1977) MR0464200
  2. Miklos S., Exactly ( n , 1 ) mappings onto generalized local dendrites, Topology Appl. 31 (1989), 47-53. (1989) Zbl0667.54013MR0984103
  3. Miklos S., Local homeomorphisms onto nonunicoherent continua, Period. Math. Hungar. 20 (1989), 305-306. (1989) Zbl0649.54019MR1042718
  4. Rosenholtz I., Local expansions, derivatives, and fixed points, Fund. Math. 91 (1976), 1-4. (1976) Zbl0326.54031MR0410719

NotesEmbed ?

top

You must be logged in to post comments.