# Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues

Commentationes Mathematicae Universitatis Carolinae (1993)

- Volume: 34, Issue: 3, page 451-457
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topKowalski, Oldřich. "Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues." Commentationes Mathematicae Universitatis Carolinae 34.3 (1993): 451-457. <http://eudml.org/doc/247456>.

@article{Kowalski1993,

abstract = {We extend a construction by K. Yamato [Ya] to obtain new explicit examples of Riemannian 3-manifolds as in the title. Some of these examples have an interesting geometrical interpretation.},

author = {Kowalski, Oldřich},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {Riemannian manifold; curvature homogeneous space; curvature homogeneous; homogeneous model space; Ricci eigenvalues},

language = {eng},

number = {3},

pages = {451-457},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues},

url = {http://eudml.org/doc/247456},

volume = {34},

year = {1993},

}

TY - JOUR

AU - Kowalski, Oldřich

TI - Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1993

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 34

IS - 3

SP - 451

EP - 457

AB - We extend a construction by K. Yamato [Ya] to obtain new explicit examples of Riemannian 3-manifolds as in the title. Some of these examples have an interesting geometrical interpretation.

LA - eng

KW - Riemannian manifold; curvature homogeneous space; curvature homogeneous; homogeneous model space; Ricci eigenvalues

UR - http://eudml.org/doc/247456

ER -

## References

top- Boeckx E., Kowalski O., Vanhecke L., Nonhomogeneous relatives of symmetric spaces, to appear in Differential Geometry and its Applications. MR1264908
- Kowalski O., A classification of Riemannian 3-manifolds with constant principal Ricci curvatures ${\varrho}_{1}={\varrho}_{2}\ne {\varrho}_{3}$, to appear in Nagoya Math. J. MR1253692
- Kobayashi S., Nomizu K., Foundations of Differential Geometry I, Interscience Publishers, New York, 1983. Zbl0119.37502
- Kowalski O., Tricerri F., Vanhecke L., New examples of non-homogeneous Riemannian manifolds whose curvature tensor is that of a Riemannian symmetric space, C.R. Acad. Sci. Paris, Sér. I, 311 (1990), 355-360. (1990) Zbl0713.53028MR1071643
- Kowalski O., Tricerri F., Vanhecke L., Curvature homogeneous Riemannian manifolds, J. Math. Pures Appl. 71 (1992), 471-501. (1992) Zbl0836.53029MR1193605
- Kowalski O., Tricerri F., Vanhecke L., Curvature homogeneous spaces with a solvable Lie group as homogeneous model, J. Math. Soc. Japan 44 (1992), 461-484. (1992) Zbl0762.53031MR1167378
- Milnor J., Curvatures of left invariant Lie groups, Adv. in Math. 21 (1976), 293-329. (1976) MR0425012
- Sekigawa K., On some 3-dimensional Riemannian manifolds, Hokkaido Math. J. 2 (1973), 259-270. (1973) Zbl0266.53034MR0353204
- Sekigawa K., On some 3-dimensional curvature homogeneous spaces, Tensor, N.S. 31 (1977), 87-97. (1977) Zbl0356.53016MR0464115
- Singer I.M., Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. (1960) Zbl0171.42503MR0131248
- Tsukada T., Curvature homogeneous hypersurfaces immersed in a real space form, Tôhoku Math. J. 40 (1988), 221-244. (1988) Zbl0651.53037MR0943821
- Yamato K., A characterization of locally homogeneous Riemannian manifolds of dimension 3, Nagoya Math. J. 123 (1991), 77-90. (1991) MR1126183

## Citations in EuDML Documents

top- Giovanni Calvaruso, Oldrich Kowalski, On the Ricci operator of locally homogeneous Lorentzian 3-manifolds
- Oldřich Kowalski, Friedbert Prüfer, Curvature tensors in dimension four which do not belong to any curvature homogeneous space
- Oldřich Kowalski, Zdeněk Vlášek, On special Riemannian $3$-manifolds with distinct constant Ricci eigenvalues

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.