Bifurcation for some semilinear elliptic equations when the linearization has no eigenvalues
Commentationes Mathematicae Universitatis Carolinae (1993)
- Volume: 34, Issue: 1, page 125-138
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRother, Wolfgang. "Bifurcation for some semilinear elliptic equations when the linearization has no eigenvalues." Commentationes Mathematicae Universitatis Carolinae 34.1 (1993): 125-138. <http://eudml.org/doc/247520>.
@article{Rother1993,
abstract = {We prove existence and bifurcation results for a semilinear eigenvalue problem in $\mathbb \{R\}^N$$(N\ge 2)$, where the linearization — $\UnimplementedOperator $ has no eigenvalues. In particular, we show that under rather weak assumptions on the coefficients $\lambda =0$ is a bifurcation point for this problem in $H^1, H^2$ and $L^p$$(2\le p\le \infty )$.},
author = {Rother, Wolfgang},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bifurcation point; variational method; eigenvalues; exponential decay; standing waves; existence; bifurcation},
language = {eng},
number = {1},
pages = {125-138},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Bifurcation for some semilinear elliptic equations when the linearization has no eigenvalues},
url = {http://eudml.org/doc/247520},
volume = {34},
year = {1993},
}
TY - JOUR
AU - Rother, Wolfgang
TI - Bifurcation for some semilinear elliptic equations when the linearization has no eigenvalues
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1993
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 34
IS - 1
SP - 125
EP - 138
AB - We prove existence and bifurcation results for a semilinear eigenvalue problem in $\mathbb {R}^N$$(N\ge 2)$, where the linearization — $\UnimplementedOperator $ has no eigenvalues. In particular, we show that under rather weak assumptions on the coefficients $\lambda =0$ is a bifurcation point for this problem in $H^1, H^2$ and $L^p$$(2\le p\le \infty )$.
LA - eng
KW - bifurcation point; variational method; eigenvalues; exponential decay; standing waves; existence; bifurcation
UR - http://eudml.org/doc/247520
ER -
References
top- Anderson D., Stability of time - dependent particle solutions in nonlinear field theories II, J. Math. Phys. 12 (1971), 945-952. (1971)
- Berestycki H., Lions P.L., Nonlinear scalar field equations I: Existence of a ground state, Arch. Rat. Mech. Anal. 82 (1983), 313-345. (1983) Zbl0533.35029MR0695535
- Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, Heidelberg, New York, 1983. Zbl1042.35002MR0737190
- Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1975. Zbl0307.28001MR0367121
- Rother W., Bifurcation of nonlinear elliptic equations on , Bull. London Math. Soc. 21 (1989), 567-572. (1989) MR1018205
- Rother W., Bifurcation of nonlinear elliptic equations on with radially symmetric coefficients, Manuscripta Math. 65 (1989), 413-426. (1989) MR1019700
- Rother W., The existence of infinitely many solutions all bifurcating from , Proc. Royal Soc. Edinburgh 118A (1991), 295-303. (1991) Zbl0748.35029MR1121669
- Rother W., Nonlinear Scalar Field Equations, Differential and Integral Equations, to appear. Zbl0755.35082MR1167494
- Ruppen J.-H., The existence of infinitely bifurcation branches, Proc. Royal Soc. Edinburgh 101A (1985), 307-320. (1985)
- Stampacchia G., Le probleème de Dirichlet pour les équations elliptique du second ordre à coefficients discontinues, Annls Inst. Fourier Univ. Grenoble 15 (1965), 189-257. (1965) MR0192177
- Stampacchia G., Équations elliptiques du second ordre à coefficients discontinues, Séminaire de Mathématiques Supérieurs, No. 16, Montreal, 1965. MR0251373
- Strauss W.A., Existence of solitary waves in higher dimensions, Commun. Math. Phys. 55 (1977), 149-162. (1977) Zbl0356.35028MR0454365
- Stuart C.A., Bifurcation from the continuous spectrum in the - theory of elliptic equations on , Recent Methods in Nonlinear Analysis and Applications, Proc. SAFA IV, Liguori, Napoli, 1981, pp. 231-300. MR0819032
- Stuart C.A., Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. (3) 45 (1982), 169-192. (1982) Zbl0505.35010MR0662670
- Stuart C.A., Bifurcation from the essential spectrum, Lecture Notes in Math. 1017 (1983), 575-596. (1983) Zbl0527.35010MR0726615
- Stuart C.A., Bifurcation in for a semilinear elliptic equation, Proc. London Math. Soc. (3) 57 (1988), 511-541. (1988) MR0960098
- Stuart C.A., Bifurcation from the essential spectrum for some non-compact non-linearities, Math. Methods Appl. Sci. 11 (1989), 525-542. (1989) MR1001101
- Zhou H.-S., Zhu X.P., Bifurcation from the essential spectrum of superlinear elliptic equations, Appl. Analysis 28 (1988), 51-61. (1988) Zbl0621.35009MR0960586
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.