Note on special arithmetic and geometric means
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 2, page 409-412
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAlzer, Horst. "Note on special arithmetic and geometric means." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 409-412. <http://eudml.org/doc/247593>.
@article{Alzer1994,
	abstract = {We prove: If $A(n)$ and $G(n)$ denote the arithmetic and geometric means of the first $n$ positive integers, then the sequence $n\mapsto nA(n)/G(n)-(n-1)A(n-1)/G(n-1)$$(n\ge 2)$ is strictly increasing and converges to $e/2$, as $n$ tends to $\infty $.},
	author = {Alzer, Horst},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {arithmetic and geometric means; discrete inequality; arithmetic mean; geometric mean; inequalities; monotonic sequence; convergence},
	language = {eng},
	number = {2},
	pages = {409-412},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {Note on special arithmetic and geometric means},
	url = {http://eudml.org/doc/247593},
	volume = {35},
	year = {1994},
}
TY  - JOUR
AU  - Alzer, Horst
TI  - Note on special arithmetic and geometric means
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 35
IS  - 2
SP  - 409
EP  - 412
AB  - We prove: If $A(n)$ and $G(n)$ denote the arithmetic and geometric means of the first $n$ positive integers, then the sequence $n\mapsto nA(n)/G(n)-(n-1)A(n-1)/G(n-1)$$(n\ge 2)$ is strictly increasing and converges to $e/2$, as $n$ tends to $\infty $.
LA  - eng
KW  - arithmetic and geometric means; discrete inequality; arithmetic mean; geometric mean; inequalities; monotonic sequence; convergence
UR  - http://eudml.org/doc/247593
ER  - 
References
top- Fichtenholz G.M., Differential - und Integralrechnung, II, Dt. Verlag Wissensch., Berlin, 1979. Zbl0900.26002MR0238636
- Minc H., Sathre L., Some inequalities involving , Edinburgh Math. Soc. 14 (1964/65), 41-46. (1964/65) MR0162751
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 