On a method for a-posteriori error estimation of approximate solutions to parabolic problems
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 4, page 735-740
 - ISSN: 0010-2628
 
Access Full Article
topAbstract
topHow to cite
topWeisz, Juraj. "On a method for a-posteriori error estimation of approximate solutions to parabolic problems." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 735-740. <http://eudml.org/doc/247605>.
@article{Weisz1994,
	abstract = {The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution.},
	author = {Weisz, Juraj},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {parabolic problem; a-posteriori error estimate; parabolic equation; Galerkin-Rothe method; orthogonal projection; a posteriori error estimates; dual problem; error bounds},
	language = {eng},
	number = {4},
	pages = {735-740},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {On a method for a-posteriori error estimation of approximate solutions to parabolic problems},
	url = {http://eudml.org/doc/247605},
	volume = {35},
	year = {1994},
}
TY  - JOUR
AU  - Weisz, Juraj
TI  - On a method for a-posteriori error estimation of approximate solutions to parabolic problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1994
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 35
IS  - 4
SP  - 735
EP  - 740
AB  - The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution.
LA  - eng
KW  - parabolic problem; a-posteriori error estimate; parabolic equation; Galerkin-Rothe method; orthogonal projection; a posteriori error estimates; dual problem; error bounds
UR  - http://eudml.org/doc/247605
ER  - 
References
top- Eriksson K., Johnson C., Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal. 28 (1991), 43-77. (1991) Zbl0732.65093MR1083324
 - Gajewski H., Gröger K., Konjugierte Probleme und a-posteriori Fehlerabschätzungen,, Math. Nachrichten 73 (1976), 315-333. (1976) MR0435959
 - Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie -Verlag Berlin, 1974 (Russian Mir Moskva 1978). MR0636412
 - Weisz J., A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem, Commentationes Math. Univ. Carolinae 31 (1990), 315-322. (1990) Zbl0709.65074MR1077902
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.