On a method for a-posteriori error estimation of approximate solutions to parabolic problems

Juraj Weisz

Commentationes Mathematicae Universitatis Carolinae (1994)

  • Volume: 35, Issue: 4, page 735-740
  • ISSN: 0010-2628

Abstract

top
The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution.

How to cite

top

Weisz, Juraj. "On a method for a-posteriori error estimation of approximate solutions to parabolic problems." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 735-740. <http://eudml.org/doc/247605>.

@article{Weisz1994,
abstract = {The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution.},
author = {Weisz, Juraj},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {parabolic problem; a-posteriori error estimate; parabolic equation; Galerkin-Rothe method; orthogonal projection; a posteriori error estimates; dual problem; error bounds},
language = {eng},
number = {4},
pages = {735-740},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a method for a-posteriori error estimation of approximate solutions to parabolic problems},
url = {http://eudml.org/doc/247605},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Weisz, Juraj
TI - On a method for a-posteriori error estimation of approximate solutions to parabolic problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 4
SP - 735
EP - 740
AB - The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution.
LA - eng
KW - parabolic problem; a-posteriori error estimate; parabolic equation; Galerkin-Rothe method; orthogonal projection; a posteriori error estimates; dual problem; error bounds
UR - http://eudml.org/doc/247605
ER -

References

top
  1. Eriksson K., Johnson C., Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal. 28 (1991), 43-77. (1991) Zbl0732.65093MR1083324
  2. Gajewski H., Gröger K., Konjugierte Probleme und a-posteriori Fehlerabschätzungen,, Math. Nachrichten 73 (1976), 315-333. (1976) MR0435959
  3. Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie -Verlag Berlin, 1974 (Russian Mir Moskva 1978). MR0636412
  4. Weisz J., A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem, Commentationes Math. Univ. Carolinae 31 (1990), 315-322. (1990) Zbl0709.65074MR1077902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.