Boundary value problems and periodic solutions for semilinear evolution inclusions
Commentationes Mathematicae Universitatis Carolinae (1994)
- Volume: 35, Issue: 2, page 325-336
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPapageorgiou, Nikolaos S.. "Boundary value problems and periodic solutions for semilinear evolution inclusions." Commentationes Mathematicae Universitatis Carolinae 35.2 (1994): 325-336. <http://eudml.org/doc/247638>.
@article{Papageorgiou1994,
abstract = {We consider boundary value problems for semilinear evolution inclusions. We establish the existence of extremal solutions. Using that result, we show that the evolution inclusion has periodic extremal trajectories. These results are then applied to closed loop control systems. Finally, an example of a semilinear parabolic distributed parameter control system is worked out in detail.},
author = {Papageorgiou, Nikolaos S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {evolution operator; multifunction; Hausdorff metric; extremal solution; periodic solution; Fredholm alternative; control system; parabolic system; evolution operators; boundary value problems; semilinear differential inclusions; Banach spaces; periodic trajectories; bang-bang controls; semilinear parabolic control systems},
language = {eng},
number = {2},
pages = {325-336},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Boundary value problems and periodic solutions for semilinear evolution inclusions},
url = {http://eudml.org/doc/247638},
volume = {35},
year = {1994},
}
TY - JOUR
AU - Papageorgiou, Nikolaos S.
TI - Boundary value problems and periodic solutions for semilinear evolution inclusions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1994
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 35
IS - 2
SP - 325
EP - 336
AB - We consider boundary value problems for semilinear evolution inclusions. We establish the existence of extremal solutions. Using that result, we show that the evolution inclusion has periodic extremal trajectories. These results are then applied to closed loop control systems. Finally, an example of a semilinear parabolic distributed parameter control system is worked out in detail.
LA - eng
KW - evolution operator; multifunction; Hausdorff metric; extremal solution; periodic solution; Fredholm alternative; control system; parabolic system; evolution operators; boundary value problems; semilinear differential inclusions; Banach spaces; periodic trajectories; bang-bang controls; semilinear parabolic control systems
UR - http://eudml.org/doc/247638
ER -
References
top- Anichini G., Nonlinear problems for systems of differential equations, Nonlinear Anal.-TMA 1 (1977), 691-699. (1977) Zbl0388.34011MR0592963
- Benamara M., Points Extremaux, Multi-applications et Fonctionelles Intégrales, Thèse du 3ème cycle, Université de Grenoble, 1975.
- Diestel J., Uhl J., Vector Measures, Math. Surveys, Vol. 15, AMS, Providence, RI, 1977. Zbl0521.46035MR0453964
- Himmelberg C., Measurable relations, Fund. Math. 87 (1975), 57-91. (1975) Zbl0296.28003MR0367142
- Kartsatos A., Locally invertible operators and existence problems in differential systems, Tohoku Math. Jour. 28 (1976), 167-176. (1976) Zbl0356.34019MR0430385
- Klein E., Thompson A., Theory of Correspondences, Wiley, New York, 1984. Zbl0556.28012MR0752692
- Konishi Y., Compacité des résolvantes des opérateurs maximaux cycliquement monotones, Proc. Japan Acad. 49 (1973), 303-305. (1973) Zbl0272.47034MR0346600
- Papageorgiou N.S., On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation, J. Multiv. Anal. 17 (1985), 185-206. (1985) MR0808276
- Papageorgiou N.S., Convergence theorems for Banach space valued integrable multifunctions, Intern. J. Math. and Math. Sci. 10 (1987), 433-442. (1987) Zbl0619.28009MR0896595
- Papageorgiou N.S., On multivalued evolution equations and differential inclusions in Banach spaces, Comm. Math. Univ. S.P. 36 (1987), 21-39. (1987) Zbl0641.47052MR0892378
- Papageorgiou N.S., Boundary value problems for evolution inclusions, Comment. Math. Univ. Carolinae 29 (1988), 355-363. (1988) Zbl0696.35074MR0957404
- Papageorgiou N.S., On evolution inclusion associated with time dependent convex subdifferentials, Comment. Math. Univ. Carolinae 31 (1990), 517-527. (1990) MR1078486
- Pavel N., Nonlinear Evolution Operators and Semigroups, Lecture Notes in Math. 1260, Springer, Berlin, 1987. Zbl0626.35003MR0900380
- Tanabe H., Equations in Evolution, Pitman, London, 1979.
- Tolstonogov A., Extreme continuous selectors of multivalued maps and the ``bang-bang'' principle for evolution inclusions, Soviet Math. Doklady 317 (1991), 481-485. (1991) MR1121349
- Wagner D., Survey of measurable selection theorems, SIAM J. Control. Optim. 15 (1977), 859-903. (1977) Zbl0407.28006MR0486391
- Zecca P., Zezza P., Nonlinear boundary value problems in Banach spaces for multivalued differential equations on a non-compact interval, Nonlinear Anal.-TMA 3 (1979), 347-352. (1979) MR0532895
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.