Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach
Tiziana Cardinali; Lucia Santori
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 1, page 115-125
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCardinali, Tiziana, and Santori, Lucia. "Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 115-125. <http://eudml.org/doc/246409>.
@article{Cardinali2011,
abstract = {In this paper we prove two existence theorems for abstract boundary value problems controlled by semilinear evolution inclusions in which the nonlinear part is a lower Scorza-Dragoni multifunction. Then, by using these results, we obtain the existence of periodic mild solutions.},
author = {Cardinali, Tiziana, Santori, Lucia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semilinear differential inclusion; selection theorem; mild solution; lower Scorza Dragoni multifunction; mild periodic solution; semilinear differential inclusion; selection theorem; mild solution; lower Scorza Dragoni multifunction; mild periodic solution},
language = {eng},
number = {1},
pages = {115-125},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach},
url = {http://eudml.org/doc/246409},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Cardinali, Tiziana
AU - Santori, Lucia
TI - Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 115
EP - 125
AB - In this paper we prove two existence theorems for abstract boundary value problems controlled by semilinear evolution inclusions in which the nonlinear part is a lower Scorza-Dragoni multifunction. Then, by using these results, we obtain the existence of periodic mild solutions.
LA - eng
KW - semilinear differential inclusion; selection theorem; mild solution; lower Scorza Dragoni multifunction; mild periodic solution; semilinear differential inclusion; selection theorem; mild solution; lower Scorza Dragoni multifunction; mild periodic solution
UR - http://eudml.org/doc/246409
ER -
References
top- Andres J., Malaguti L., Taddei V., On Boundary value problems in Banach spaces, Dynam. Systems Appl. 18 (2009), 275–302. Zbl1195.34091MR2543232
- Anichini G., Zecca P., Problemi ai limiti per equazioni differenziali multivoche su intervalli non compatti, Riv. Mat. Univ. Parma 1 (1975), 199–212. Zbl0359.34057MR0447728
- Artstein Z., Prikry K., 10.1016/0022-247X(87)90128-4, J. Math. Anal. Appl. 127 (1987), no. 2, 540–547. Zbl0649.28011MR0915076DOI10.1016/0022-247X(87)90128-4
- Brezis H., Analisi Funzionale-Teoria e Applicazioni, Liguori, Napoli, 1986.
- Chang K.C., 10.1002/cpa.3160330203, Comm. Pure Appl. Math. 33 (1980), 117–146. Zbl0405.35074MR0562547DOI10.1002/cpa.3160330203
- Conti R., Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. Univ. Mat. Ital. 22 (1967), 135–178. Zbl0154.09101MR0218650
- Himmelberg C.J., Measurable relations, Fund. Math. 87 (1975), 53–71. Zbl0465.28002MR0367142
- Hu S., Papageorgiou N.S., Handbook of Multivalued Analysis, 1, Kluwer Academic Publishers, Dordrecht, 1997. Zbl0943.47037MR1485775
- Kamenskii M.I., Obukhovskii V.V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl. 7, De Gruyter, Berlin-New York, 2001. Zbl0988.34001MR1831201
- Kolmogorov A.N., Fomin S.V., Introductory Real Analysis, Prentice-Hall, Inc. Englewood Cliffs, N.J., 1970. Zbl0213.07305MR0267052
- Krein S.G., Linear Differential Equations in Banach Spaces, American Mathematical Society, Providence, R.I., 1971. MR0342804
- Martin R., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976. Zbl0333.47023MR0492671
- Michael E., 10.2307/1969615, Ann. of Math. (2) 63 (1956), 361–382. Zbl0071.15902MR0077107DOI10.2307/1969615
- Naito K., Approximation and controllability for solution of semilinear control systems, Control Theory Adv. Tech. 1 (1985), 165–173. MR0927841
- Obukhovskii V.V., Zecca P., 10.1155/S108533750330301X, Abstr. Appl. Anal. 13 (2003), 769–784. MR1996923DOI10.1155/S108533750330301X
- Papageorgiou N.S., Boundary value problems for evolution inclusions, Ann. Polon. Math. 50 (1990), 251–259. Zbl0715.35090MR1064999
- Papageorgiou N.S., Boundary value problems and periodic solutions for semilinear evolution inclusions, Comment. Math. Univ. Carolin. 35 (1994), no. 2, 325–336. Zbl0807.34077MR1286579
- Papageorgiou N.S., Existence of solutions for boundary problems of semilinear evolution inclusions, Indian J. Pure Appl. Math. 23 (1992), no. 7, 477–488. MR1174609
- Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983. Zbl0516.47023MR0710486
- Zecca P., Zezza P., Nonlinear boundary value problems in Banach spaces for multivalue differential equations on a non-compact interval, Nonlinear Anal. T.M.A. 3 (1979), 347–352. Zbl0443.34060MR0532895
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.