Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach

Tiziana Cardinali; Lucia Santori

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 1, page 115-125
  • ISSN: 0010-2628

Abstract

top
In this paper we prove two existence theorems for abstract boundary value problems controlled by semilinear evolution inclusions in which the nonlinear part is a lower Scorza-Dragoni multifunction. Then, by using these results, we obtain the existence of periodic mild solutions.

How to cite

top

Cardinali, Tiziana, and Santori, Lucia. "Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 115-125. <http://eudml.org/doc/246409>.

@article{Cardinali2011,
abstract = {In this paper we prove two existence theorems for abstract boundary value problems controlled by semilinear evolution inclusions in which the nonlinear part is a lower Scorza-Dragoni multifunction. Then, by using these results, we obtain the existence of periodic mild solutions.},
author = {Cardinali, Tiziana, Santori, Lucia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semilinear differential inclusion; selection theorem; mild solution; lower Scorza Dragoni multifunction; mild periodic solution; semilinear differential inclusion; selection theorem; mild solution; lower Scorza Dragoni multifunction; mild periodic solution},
language = {eng},
number = {1},
pages = {115-125},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach},
url = {http://eudml.org/doc/246409},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Cardinali, Tiziana
AU - Santori, Lucia
TI - Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 115
EP - 125
AB - In this paper we prove two existence theorems for abstract boundary value problems controlled by semilinear evolution inclusions in which the nonlinear part is a lower Scorza-Dragoni multifunction. Then, by using these results, we obtain the existence of periodic mild solutions.
LA - eng
KW - semilinear differential inclusion; selection theorem; mild solution; lower Scorza Dragoni multifunction; mild periodic solution; semilinear differential inclusion; selection theorem; mild solution; lower Scorza Dragoni multifunction; mild periodic solution
UR - http://eudml.org/doc/246409
ER -

References

top
  1. Andres J., Malaguti L., Taddei V., On Boundary value problems in Banach spaces, Dynam. Systems Appl. 18 (2009), 275–302. Zbl1195.34091MR2543232
  2. Anichini G., Zecca P., Problemi ai limiti per equazioni differenziali multivoche su intervalli non compatti, Riv. Mat. Univ. Parma 1 (1975), 199–212. Zbl0359.34057MR0447728
  3. Artstein Z., Prikry K., 10.1016/0022-247X(87)90128-4, J. Math. Anal. Appl. 127 (1987), no. 2, 540–547. Zbl0649.28011MR0915076DOI10.1016/0022-247X(87)90128-4
  4. Brezis H., Analisi Funzionale-Teoria e Applicazioni, Liguori, Napoli, 1986. 
  5. Chang K.C., 10.1002/cpa.3160330203, Comm. Pure Appl. Math. 33 (1980), 117–146. Zbl0405.35074MR0562547DOI10.1002/cpa.3160330203
  6. Conti R., Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. Univ. Mat. Ital. 22 (1967), 135–178. Zbl0154.09101MR0218650
  7. Himmelberg C.J., Measurable relations, Fund. Math. 87 (1975), 53–71. Zbl0465.28002MR0367142
  8. Hu S., Papageorgiou N.S., Handbook of Multivalued Analysis, 1, Kluwer Academic Publishers, Dordrecht, 1997. Zbl0943.47037MR1485775
  9. Kamenskii M.I., Obukhovskii V.V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl. 7, De Gruyter, Berlin-New York, 2001. Zbl0988.34001MR1831201
  10. Kolmogorov A.N., Fomin S.V., Introductory Real Analysis, Prentice-Hall, Inc. Englewood Cliffs, N.J., 1970. Zbl0213.07305MR0267052
  11. Krein S.G., Linear Differential Equations in Banach Spaces, American Mathematical Society, Providence, R.I., 1971. MR0342804
  12. Martin R., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976. Zbl0333.47023MR0492671
  13. Michael E., 10.2307/1969615, Ann. of Math. (2) 63 (1956), 361–382. Zbl0071.15902MR0077107DOI10.2307/1969615
  14. Naito K., Approximation and controllability for solution of semilinear control systems, Control Theory Adv. Tech. 1 (1985), 165–173. MR0927841
  15. Obukhovskii V.V., Zecca P., 10.1155/S108533750330301X, Abstr. Appl. Anal. 13 (2003), 769–784. MR1996923DOI10.1155/S108533750330301X
  16. Papageorgiou N.S., Boundary value problems for evolution inclusions, Ann. Polon. Math. 50 (1990), 251–259. Zbl0715.35090MR1064999
  17. Papageorgiou N.S., Boundary value problems and periodic solutions for semilinear evolution inclusions, Comment. Math. Univ. Carolin. 35 (1994), no. 2, 325–336. Zbl0807.34077MR1286579
  18. Papageorgiou N.S., Existence of solutions for boundary problems of semilinear evolution inclusions, Indian J. Pure Appl. Math. 23 (1992), no. 7, 477–488. MR1174609
  19. Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983. Zbl0516.47023MR0710486
  20. Zecca P., Zezza P., Nonlinear boundary value problems in Banach spaces for multivalue differential equations on a non-compact interval, Nonlinear Anal. T.M.A. 3 (1979), 347–352. Zbl0443.34060MR0532895

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.