Attouch-Wets convergence and Kuratowski convergence on compact sets
Paolo Piccione; Rosella Sampalmieri
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 3, page 551-562
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPiccione, Paolo, and Sampalmieri, Rosella. "Attouch-Wets convergence and Kuratowski convergence on compact sets." Commentationes Mathematicae Universitatis Carolinae 36.3 (1995): 551-562. <http://eudml.org/doc/247709>.
@article{Piccione1995,
abstract = {Let $X$ be a locally connected, $b$-compact metric space and $E$ a closed subset of $X$. Let $\mathbb \{G\}$ be the space of all continuous real-valued functions defined on some closed subsets of $E$. We prove the equivalence of the $\{\tau _\{_\{a\!w\}\}\}$ and $\{\tau ^c_\{_\{\!K\}\}\}$ topologies on $\mathbb \{G\}$, where $\tau _\{_\{a\!w\}\}$ is the so called Attouch-Wets topology, defined in terms of uniform convergence of distance functionals, and $\{\tau ^c_\{_\{\!K\}\}\}$ is the topology of Kuratowski convergence on compacta.},
author = {Piccione, Paolo, Sampalmieri, Rosella},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {function spaces; Kuratowski convergence; hyperspaces; Kuratowski convergence on compacta; Attouch-Wets convergence},
language = {eng},
number = {3},
pages = {551-562},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Attouch-Wets convergence and Kuratowski convergence on compact sets},
url = {http://eudml.org/doc/247709},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Piccione, Paolo
AU - Sampalmieri, Rosella
TI - Attouch-Wets convergence and Kuratowski convergence on compact sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 3
SP - 551
EP - 562
AB - Let $X$ be a locally connected, $b$-compact metric space and $E$ a closed subset of $X$. Let $\mathbb {G}$ be the space of all continuous real-valued functions defined on some closed subsets of $E$. We prove the equivalence of the ${\tau _{_{a\!w}}}$ and ${\tau ^c_{_{\!K}}}$ topologies on $\mathbb {G}$, where $\tau _{_{a\!w}}$ is the so called Attouch-Wets topology, defined in terms of uniform convergence of distance functionals, and ${\tau ^c_{_{\!K}}}$ is the topology of Kuratowski convergence on compacta.
LA - eng
KW - function spaces; Kuratowski convergence; hyperspaces; Kuratowski convergence on compacta; Attouch-Wets convergence
UR - http://eudml.org/doc/247709
ER -
References
top- Beer G., On uniform convergence of continuous functions and topological convergence of sets, Can. Math. Bull. 26 (1983), 418-424. (1983) Zbl0488.54007MR0716581
- Beer G., More on uniform convergence of continuous functions and topological convergence of sets, Can. Math. Bull. 28 (1985), 52-59. (1985) MR0778261
- Beer G., Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Amer. Math. Soc. 95 (1985), 653-658. (1985) Zbl0594.54007MR0810180
- Beer G., Diconcilio A., Uniform continuity on bounded sets and the Attouch-Wets topology, Proc. Am. Math. Soc. 112/11 (1991), 235-243. (1991) MR1033956
- Brandi P., Ceppitelli R., Esistenza, unicità e dipendenza continua per equazioni differenziali in una struttura ereditaria, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 357-363. (1987) MR0937975
- Brandi P., Ceppitelli R., Existence, uniqueness and continuous dependence for hereditary differential equations, J. Diff. Equations 81 (1989), 317-339. (1989) Zbl0709.34062MR1016086
- Brandi P., Ceppitelli R., A new graph topology. Connections with the compact-open topology, to appear. Zbl0836.54010MR1379407
- Holá L., The Attouch-Wets topology and a characterization of normable linear spaces, Bull. Austral. Math. Soc. 44 (1991), 11-18. (1991) MR1120389
- Kelley J.L., General Topology, Van Nostrand Reinhold Company (1955). (1955) Zbl0066.16604MR0070144
- Kuratowski K., Topology, Academic Press New York (1966). (1966) Zbl0163.17002MR0217751
- Mosco U., Convergence of convex sets and solutions of variational inequalities, Advances in Mathematics 3 (1969), 510-585. (1969) MR0298508
- Naimpally S.A., Graph topology for function spaces, Trans. Amer. Math. Soc. 123 (1966), 267-272. (1966) Zbl0151.29703MR0192466
- Naimpally S.A., Hyperspaces and function spaces, Questions and Answers Gen. Topology 9 (1991), 33-60. (1991) Zbl0717.54005MR1088448
- Sampalmieri R., Kuratowski convergence on compact sets, Atti Sem. Mat. Fis. Univ. Modena 39 (1992), 381-390. (1992) Zbl0770.54016MR1200296
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.