Kuratowski convergence on compacta and Hausdorff metric convergence on compacta

Primo Brandi; Rita Ceppitelli; Ľubica Holá

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 2, page 309-318
  • ISSN: 0010-2628

Abstract

top
This paper completes and improves results of [10]. Let ( X , d X ) , ( Y , d Y ) be two metric spaces and G be the space of all Y -valued continuous functions whose domain is a closed subset of X . If X is a locally compact metric space, then the Kuratowski convergence τ K and the Kuratowski convergence on compacta τ K c coincide on G . Thus if X and Y are boundedly compact metric spaces we have the equivalence of the convergence in the Attouch-Wets topology τ A W (generated by the box metric of d X and d Y ) and τ K c convergence on G , which improves the main result of [10]. In the second part of paper we extend the definition of Hausdorff metric convergence on compacta for general metric spaces X and Y and we show that if X is locally compact metric space, then also τ -convergence and Hausdorff metric convergence on compacta coincide in G .

How to cite

top

Brandi, Primo, Ceppitelli, Rita, and Holá, Ľubica. "Kuratowski convergence on compacta and Hausdorff metric convergence on compacta." Commentationes Mathematicae Universitatis Carolinae 40.2 (1999): 309-318. <http://eudml.org/doc/248381>.

@article{Brandi1999,
abstract = {This paper completes and improves results of [10]. Let $(X,d_\{_X\})$, $(Y,d_\{_Y\})$ be two metric spaces and $G$ be the space of all $Y$-valued continuous functions whose domain is a closed subset of $X$. If $X$ is a locally compact metric space, then the Kuratowski convergence $\tau _\{_K\}$ and the Kuratowski convergence on compacta $\tau _\{_K\}^c$ coincide on $G$. Thus if $X$ and $Y$ are boundedly compact metric spaces we have the equivalence of the convergence in the Attouch-Wets topology $\tau _\{_\{AW\}\}$ (generated by the box metric of $d_\{_X\}$ and $d_\{_Y\}$) and $\tau _\{_K\}^c$ convergence on $G$, which improves the main result of [10]. In the second part of paper we extend the definition of Hausdorff metric convergence on compacta for general metric spaces $X$ and $Y$ and we show that if $X$ is locally compact metric space, then also $\tau $-convergence and Hausdorff metric convergence on compacta coincide in $G$.},
author = {Brandi, Primo, Ceppitelli, Rita, Holá, Ľubica},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Kuratowski convergence; Attouch-Wets convergence; $\tau $-convergence; Kuratowski convergence on compacta and Hausdorff metric convergence on compacta; -convergence; Kuratowski convergence on compacta; Hausdorff metric convergence on compacta},
language = {eng},
number = {2},
pages = {309-318},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Kuratowski convergence on compacta and Hausdorff metric convergence on compacta},
url = {http://eudml.org/doc/248381},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Brandi, Primo
AU - Ceppitelli, Rita
AU - Holá, Ľubica
TI - Kuratowski convergence on compacta and Hausdorff metric convergence on compacta
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 2
SP - 309
EP - 318
AB - This paper completes and improves results of [10]. Let $(X,d_{_X})$, $(Y,d_{_Y})$ be two metric spaces and $G$ be the space of all $Y$-valued continuous functions whose domain is a closed subset of $X$. If $X$ is a locally compact metric space, then the Kuratowski convergence $\tau _{_K}$ and the Kuratowski convergence on compacta $\tau _{_K}^c$ coincide on $G$. Thus if $X$ and $Y$ are boundedly compact metric spaces we have the equivalence of the convergence in the Attouch-Wets topology $\tau _{_{AW}}$ (generated by the box metric of $d_{_X}$ and $d_{_Y}$) and $\tau _{_K}^c$ convergence on $G$, which improves the main result of [10]. In the second part of paper we extend the definition of Hausdorff metric convergence on compacta for general metric spaces $X$ and $Y$ and we show that if $X$ is locally compact metric space, then also $\tau $-convergence and Hausdorff metric convergence on compacta coincide in $G$.
LA - eng
KW - Kuratowski convergence; Attouch-Wets convergence; $\tau $-convergence; Kuratowski convergence on compacta and Hausdorff metric convergence on compacta; -convergence; Kuratowski convergence on compacta; Hausdorff metric convergence on compacta
UR - http://eudml.org/doc/248381
ER -

References

top
  1. Beer G., Topologies on Closed and Closed Convex Sets, Kluwer, 1993. Zbl0792.54008MR1269778
  2. Brandi P., Ceppitelli R., Esistenza, unicitá e dipendenza continua per equazioni differenziali in una struttura ereditaria, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 357-363. (1987) MR0937975
  3. Brandi P., Ceppitelli R., Existence, uniqueness and continuous dependence for hereditary differential equations, J. Diff. Equations 81 (1989), 317-339. (1989) Zbl0709.34062MR1016086
  4. Brandi P., Ceppitelli R., A new graph topology. Connections with compact open topology, Appl. Analysis 53 (1994), 185-196. (1994) MR1379407
  5. Brandi P., Ceppitelli R., A new graph topology intended for functional differential equations, Atti Sem. Mat. Univ. Modena 54 (1996), 43-52. (1996) Zbl0890.54010MR1405228
  6. Brandi P., Ceppitelli R., A hypertopology intended for functional differential equations, Appl. Analysis 67 (1997), 73-88. (1997) Zbl0886.54009MR1609874
  7. Brandi P., Ceppitelli R., Holá L'., Topological properties of a new graph topology, J. Convex Anal. 5 (1998), 2 1-12. (1998) MR1713949
  8. Ceppitelli R., Faina L., Differential equations with hereditary structure induced by a Volterra type property, preprint. Zbl0988.34049MR1821774
  9. Holá L'., The Attouch-Wets topology and a characterization of normable linear spaces, Bull. Austral. Math. Soc. 44 (1991), 11-18. (1991) MR1120389
  10. Piccione P., Sampalmieri R., Attouch-Wets convergence and Kuratowski convergence on compact sets, Comment. Math. Univ. Carolinae 36 (1995), 551-562. (1995) Zbl0844.54010MR1364496
  11. Sampalmieri R., Kuratowski convergence on compact sets, Atti Sem. Mat. Fis. Univ. Modena 39 (1992), 381-390. (1992) Zbl0770.54016MR1200296

NotesEmbed ?

top

You must be logged in to post comments.