Relaxation of vectorial variational problems

Tomáš Roubíček

Mathematica Bohemica (1995)

  • Volume: 120, Issue: 4, page 411-430
  • ISSN: 0862-7959

Abstract

top
Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification.

How to cite

top

Roubíček, Tomáš. "Relaxation of vectorial variational problems." Mathematica Bohemica 120.4 (1995): 411-430. <http://eudml.org/doc/247811>.

@article{Roubíček1995,
abstract = {Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification.},
author = {Roubíček, Tomáš},
journal = {Mathematica Bohemica},
keywords = {variational relaxation; abstract relaxed problem; first-order optimality conditions; Carathéodory integrands; quasiconvexified problem; Young measures; relaxed variational problems; minors of gradients; optimality conditions; Weierstrass-type maximum principle; variational relaxation; abstract relaxed problem; first-order optimality conditions; Carathéodory integrands; quasiconvexified problem; Young measures},
language = {eng},
number = {4},
pages = {411-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relaxation of vectorial variational problems},
url = {http://eudml.org/doc/247811},
volume = {120},
year = {1995},
}

TY - JOUR
AU - Roubíček, Tomáš
TI - Relaxation of vectorial variational problems
JO - Mathematica Bohemica
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 120
IS - 4
SP - 411
EP - 430
AB - Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification.
LA - eng
KW - variational relaxation; abstract relaxed problem; first-order optimality conditions; Carathéodory integrands; quasiconvexified problem; Young measures; relaxed variational problems; minors of gradients; optimality conditions; Weierstrass-type maximum principle; variational relaxation; abstract relaxed problem; first-order optimality conditions; Carathéodory integrands; quasiconvexified problem; Young measures
UR - http://eudml.org/doc/247811
ER -

References

top
  1. Acerbi E., Fusco N., 10.1007/BF00275731, Archive Rat. Mech. Anal. 86 (1984), 125-145. (1984) Zbl0565.49010MR0751305DOI10.1007/BF00275731
  2. Ball J.M., On the calculus of variations and sequentially weakly continuous maps, Proc. Conf. Ordinary and Partial Differential Equations (Everitt W.N., Sleeman B.D., eds.). Lecture Notes in Math. 564, Springer, Berlin, 1976, pp. 13-25. (1976) Zbl0348.49004MR0637229
  3. Ball J.M., 10.1007/BF00279992, Archive Rat. Mech. Anal. 63, (1977), 337-403. (1977) Zbl0368.73040MR0475169DOI10.1007/BF00279992
  4. Ball J.M., A version of the fundamental theorem for Young measures, PDEs and Continuum Models of Phase Transition (Rascle M., Serre D., Slemrod M., eds.). Lecture Notes in Physics 344, Springer, Beгlin, 1989, pp. 207-215. (1989) Zbl0991.49500MR1036070
  5. Ball J.M., James R.D., 10.1007/BF00281246, Archive Rat. Mech. Anal. 100, (1988), 13-52. (1988) MR0906132DOI10.1007/BF00281246
  6. Ball J.M., James R.D., 10.1098/rsta.1992.0013, Phil. Trans. Royal Soc. London A 338, (1992), 389-450. (1992) Zbl0758.73009DOI10.1098/rsta.1992.0013
  7. Buttazzo G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes in Math. 207, Longman, New York, 1989. (1989) Zbl0669.49005MR1020296
  8. Chipot M., 10.1007/BF01385808, Numer. Math. 59, (1991), 747-767. (1991) Zbl0712.65063MR1128031DOI10.1007/BF01385808
  9. Chipot M., Collins C., 10.1137/0729061, SIAM J. Numer. Anal. 29, (1992), 1002-1019.. (1992) Zbl0763.65049MR1173182DOI10.1137/0729061
  10. Chipot M., Kinderlehrer D., 10.1007/BF00251759, Aгch. Rational Mech. Anal. 103, (1988), 237-277. (1988) Zbl0673.73012MR0955934DOI10.1007/BF00251759
  11. Dacorogna B., 10.1007/BFb0096144, Lecture Notes in Math. 922. Springer, Berlin, 1982. (1982) MR0658130DOI10.1007/BFb0096144
  12. Dacorogna B., Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. (1989) Zbl0703.49001MR0990890
  13. DiPerna R.J., Majda A.J., 10.1007/BF01214424, Comm. Math. Physics 108, (1987), 667-689. (1987) Zbl0626.35059MR0877643DOI10.1007/BF01214424
  14. Dunford N., Schwartz J.T., Linear Operators, Part I, Interscience, New York, 1967. (1967) 
  15. Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. (1976) Zbl0322.90046MR0463994
  16. Friesecke G., A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Royal Soc. Edinburgh 124 A (1994), 437-471. (1994) Zbl0809.49017MR1286914
  17. Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Univ. Bonn, Lecture Notes No. 443, 1981. (1981) MR0717034
  18. Hoffmann K.-H., Roubíček, T, 10.1007/BF01189449, Appl. Math. Optim. 30, (1994), 113-126. (1994) Zbl0812.49009MR1284322DOI10.1007/BF01189449
  19. Kinderlehrer D., Pedregal P., 10.1137/0523001, SIAM J. Math. Anal. 23, (1992), 1-19. (1992) Zbl0757.49014MR1145159DOI10.1137/0523001
  20. Kohn R. V., Strang G., 10.1002/cpa.3160390107, Comm. Pure Appl. Math. 39, (1986), 113-137, 139-182, 353-377. (1986) DOI10.1002/cpa.3160390107
  21. McShane E.J., Necessary conditions in the generalized-curve problems of the calculus of variations, Duke Math. J. 7, (1940), 1-27. (1940) MR0003478
  22. Morrey C.B., 10.2140/pjm.1952.2.25, Pacific J. Math. 2, (1952), 25-53. (1952) Zbl0046.10803MR0054865DOI10.2140/pjm.1952.2.25
  23. Müller S., Weak continuity of determinants and nonlinear elasticity, C.R. Acad. Sci. Paris, Série I 307, (1988), 501-506. (1988) Zbl0679.34051MR0964116
  24. Outrata J.V., [unknown], personal communication, November 1992.. (1992) Zbl0790.90064
  25. Reshetnyak Y.G., On the stability of conformal mappings in multidimensional spaces, Siberian Math. J. 8, (1967), 69-85. (1967) Zbl0172.37801
  26. Roubíček T., Convex compactifications and special extensions of optimization problems, Nonlinear Analysis, Theory, Methods, Appl. 16 (1991), 1117-1126. (1991) MR1111622
  27. Roubíček T., Minimization on convex compactifications and relaxation of nonconvex variational problems, Advances in Math. Sciences and Appl. 1, (1992), 1-18. (1992) MR1161481
  28. Roubíček T., 10.1080/02331939208843763, Optimization 23, (1992), 261-268. (1992) Zbl0814.49023MR1238429DOI10.1080/02331939208843763
  29. Roubíček T., A note about optimality conditions for variational problems with rapidly oscillating solutions, Progress in Partial Differential Equations: Calculus of variations, applications (C.Bandle et al., eds.). Pitman Res. Notes in Math. Sci. 267 (1992), Longmann, Harlow, Essex, pp. 312-314. (1992) MR1194208
  30. Roubíček T., Optimality conditions for nonconvex variational problems relaxed in terms of Young measures, DFG Report No. 375. Technische Universität München, 1992, (submitted). (1992) MR1194208
  31. Roubíček, T, Effective characterization of generalized Young measures generated by gradients, Bollettino Unione Matematica Italiana, (in print). 
  32. Roubíček T., Nonconcentrating generalized Young functionals, (submìtted). Zbl0888.49027
  33. Roubíček T., Hoffmann K.-H., Convex local compactifications with applications to Lebesgue spaces, Nonlinear Analysis, Theory, Methods, Appl. 25 (1995), 607-628. (1995) Zbl1129.46306MR1338806
  34. Warga J., Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. (1972) Zbl0253.49001MR0372708
  35. Young L.C., Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30, (1937), 212-234. (1937) Zbl0019.21901
  36. Young L.C., 10.1007/BF02547714, Acta Math. 69, (1938), 239-258. (1938) Zbl0019.26702MR1555440DOI10.1007/BF02547714
  37. Young L.C., 10.2307/1968809, Ann. Math. 43, (1942), paгt I: 84-103, part II: 530-544. (1942) Zbl0063.09081MR0006023DOI10.2307/1968809
  38. Zowe J., Kurcyusz S., 10.1007/BF01442543, Appl. Math. Optim. 5, (1979), 49-62. (1979) Zbl0401.90104MR0526427DOI10.1007/BF01442543

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.