Relaxation of vectorial variational problems
Mathematica Bohemica (1995)
- Volume: 120, Issue: 4, page 411-430
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRoubíček, Tomáš. "Relaxation of vectorial variational problems." Mathematica Bohemica 120.4 (1995): 411-430. <http://eudml.org/doc/247811>.
@article{Roubíček1995,
abstract = {Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification.},
author = {Roubíček, Tomáš},
journal = {Mathematica Bohemica},
keywords = {variational relaxation; abstract relaxed problem; first-order optimality conditions; Carathéodory integrands; quasiconvexified problem; Young measures; relaxed variational problems; minors of gradients; optimality conditions; Weierstrass-type maximum principle; variational relaxation; abstract relaxed problem; first-order optimality conditions; Carathéodory integrands; quasiconvexified problem; Young measures},
language = {eng},
number = {4},
pages = {411-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relaxation of vectorial variational problems},
url = {http://eudml.org/doc/247811},
volume = {120},
year = {1995},
}
TY - JOUR
AU - Roubíček, Tomáš
TI - Relaxation of vectorial variational problems
JO - Mathematica Bohemica
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 120
IS - 4
SP - 411
EP - 430
AB - Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification.
LA - eng
KW - variational relaxation; abstract relaxed problem; first-order optimality conditions; Carathéodory integrands; quasiconvexified problem; Young measures; relaxed variational problems; minors of gradients; optimality conditions; Weierstrass-type maximum principle; variational relaxation; abstract relaxed problem; first-order optimality conditions; Carathéodory integrands; quasiconvexified problem; Young measures
UR - http://eudml.org/doc/247811
ER -
References
top- Acerbi E., Fusco N., 10.1007/BF00275731, Archive Rat. Mech. Anal. 86 (1984), 125-145. (1984) Zbl0565.49010MR0751305DOI10.1007/BF00275731
- Ball J.M., On the calculus of variations and sequentially weakly continuous maps, Proc. Conf. Ordinary and Partial Differential Equations (Everitt W.N., Sleeman B.D., eds.). Lecture Notes in Math. 564, Springer, Berlin, 1976, pp. 13-25. (1976) Zbl0348.49004MR0637229
- Ball J.M., 10.1007/BF00279992, Archive Rat. Mech. Anal. 63, (1977), 337-403. (1977) Zbl0368.73040MR0475169DOI10.1007/BF00279992
- Ball J.M., A version of the fundamental theorem for Young measures, PDEs and Continuum Models of Phase Transition (Rascle M., Serre D., Slemrod M., eds.). Lecture Notes in Physics 344, Springer, Beгlin, 1989, pp. 207-215. (1989) Zbl0991.49500MR1036070
- Ball J.M., James R.D., 10.1007/BF00281246, Archive Rat. Mech. Anal. 100, (1988), 13-52. (1988) MR0906132DOI10.1007/BF00281246
- Ball J.M., James R.D., 10.1098/rsta.1992.0013, Phil. Trans. Royal Soc. London A 338, (1992), 389-450. (1992) Zbl0758.73009DOI10.1098/rsta.1992.0013
- Buttazzo G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes in Math. 207, Longman, New York, 1989. (1989) Zbl0669.49005MR1020296
- Chipot M., 10.1007/BF01385808, Numer. Math. 59, (1991), 747-767. (1991) Zbl0712.65063MR1128031DOI10.1007/BF01385808
- Chipot M., Collins C., 10.1137/0729061, SIAM J. Numer. Anal. 29, (1992), 1002-1019.. (1992) Zbl0763.65049MR1173182DOI10.1137/0729061
- Chipot M., Kinderlehrer D., 10.1007/BF00251759, Aгch. Rational Mech. Anal. 103, (1988), 237-277. (1988) Zbl0673.73012MR0955934DOI10.1007/BF00251759
- Dacorogna B., 10.1007/BFb0096144, Lecture Notes in Math. 922. Springer, Berlin, 1982. (1982) MR0658130DOI10.1007/BFb0096144
- Dacorogna B., Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. (1989) Zbl0703.49001MR0990890
- DiPerna R.J., Majda A.J., 10.1007/BF01214424, Comm. Math. Physics 108, (1987), 667-689. (1987) Zbl0626.35059MR0877643DOI10.1007/BF01214424
- Dunford N., Schwartz J.T., Linear Operators, Part I, Interscience, New York, 1967. (1967)
- Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. (1976) Zbl0322.90046MR0463994
- Friesecke G., A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems, Proc. Royal Soc. Edinburgh 124 A (1994), 437-471. (1994) Zbl0809.49017MR1286914
- Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Univ. Bonn, Lecture Notes No. 443, 1981. (1981) MR0717034
- Hoffmann K.-H., Roubíček, T, 10.1007/BF01189449, Appl. Math. Optim. 30, (1994), 113-126. (1994) Zbl0812.49009MR1284322DOI10.1007/BF01189449
- Kinderlehrer D., Pedregal P., 10.1137/0523001, SIAM J. Math. Anal. 23, (1992), 1-19. (1992) Zbl0757.49014MR1145159DOI10.1137/0523001
- Kohn R. V., Strang G., 10.1002/cpa.3160390107, Comm. Pure Appl. Math. 39, (1986), 113-137, 139-182, 353-377. (1986) DOI10.1002/cpa.3160390107
- McShane E.J., Necessary conditions in the generalized-curve problems of the calculus of variations, Duke Math. J. 7, (1940), 1-27. (1940) MR0003478
- Morrey C.B., 10.2140/pjm.1952.2.25, Pacific J. Math. 2, (1952), 25-53. (1952) Zbl0046.10803MR0054865DOI10.2140/pjm.1952.2.25
- Müller S., Weak continuity of determinants and nonlinear elasticity, C.R. Acad. Sci. Paris, Série I 307, (1988), 501-506. (1988) Zbl0679.34051MR0964116
- Outrata J.V., [unknown], personal communication, November 1992.. (1992) Zbl0790.90064
- Reshetnyak Y.G., On the stability of conformal mappings in multidimensional spaces, Siberian Math. J. 8, (1967), 69-85. (1967) Zbl0172.37801
- Roubíček T., Convex compactifications and special extensions of optimization problems, Nonlinear Analysis, Theory, Methods, Appl. 16 (1991), 1117-1126. (1991) MR1111622
- Roubíček T., Minimization on convex compactifications and relaxation of nonconvex variational problems, Advances in Math. Sciences and Appl. 1, (1992), 1-18. (1992) MR1161481
- Roubíček T., 10.1080/02331939208843763, Optimization 23, (1992), 261-268. (1992) Zbl0814.49023MR1238429DOI10.1080/02331939208843763
- Roubíček T., A note about optimality conditions for variational problems with rapidly oscillating solutions, Progress in Partial Differential Equations: Calculus of variations, applications (C.Bandle et al., eds.). Pitman Res. Notes in Math. Sci. 267 (1992), Longmann, Harlow, Essex, pp. 312-314. (1992) MR1194208
- Roubíček T., Optimality conditions for nonconvex variational problems relaxed in terms of Young measures, DFG Report No. 375. Technische Universität München, 1992, (submitted). (1992) MR1194208
- Roubíček, T, Effective characterization of generalized Young measures generated by gradients, Bollettino Unione Matematica Italiana, (in print).
- Roubíček T., Nonconcentrating generalized Young functionals, (submìtted). Zbl0888.49027
- Roubíček T., Hoffmann K.-H., Convex local compactifications with applications to Lebesgue spaces, Nonlinear Analysis, Theory, Methods, Appl. 25 (1995), 607-628. (1995) Zbl1129.46306MR1338806
- Warga J., Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. (1972) Zbl0253.49001MR0372708
- Young L.C., Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30, (1937), 212-234. (1937) Zbl0019.21901
- Young L.C., 10.1007/BF02547714, Acta Math. 69, (1938), 239-258. (1938) Zbl0019.26702MR1555440DOI10.1007/BF02547714
- Young L.C., 10.2307/1968809, Ann. Math. 43, (1942), paгt I: 84-103, part II: 530-544. (1942) Zbl0063.09081MR0006023DOI10.2307/1968809
- Zowe J., Kurcyusz S., 10.1007/BF01442543, Appl. Math. Optim. 5, (1979), 49-62. (1979) Zbl0401.90104MR0526427DOI10.1007/BF01442543
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.