On the discrepancy of Markov-normal sequences

M. B. Levin

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 2, page 413-428
  • ISSN: 1246-7405

Abstract

top
We construct a Markov normal sequence with a discrepancy of O ( N - 1 / 2 log 2 N ) . The estimation of the discrepancy was previously known to be O ( e - c ( log N ) 1 / 2 ) .

How to cite

top

Levin, M. B.. "On the discrepancy of Markov-normal sequences." Journal de théorie des nombres de Bordeaux 8.2 (1996): 413-428. <http://eudml.org/doc/247824>.

@article{Levin1996,
abstract = {We construct a Markov normal sequence with a discrepancy of $O(N^\{- 1/2\} \log ^2 N)$. The estimation of the discrepancy was previously known to be $O(e^\{- c (\log N)^\{1/2\}\})$.},
author = {Levin, M. B.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {uniform distribution mod 1; discrepancy; Markov normal sequence; irreducible Markov transition matrix},
language = {eng},
number = {2},
pages = {413-428},
publisher = {Université Bordeaux I},
title = {On the discrepancy of Markov-normal sequences},
url = {http://eudml.org/doc/247824},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Levin, M. B.
TI - On the discrepancy of Markov-normal sequences
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 2
SP - 413
EP - 428
AB - We construct a Markov normal sequence with a discrepancy of $O(N^{- 1/2} \log ^2 N)$. The estimation of the discrepancy was previously known to be $O(e^{- c (\log N)^{1/2}})$.
LA - eng
KW - uniform distribution mod 1; discrepancy; Markov normal sequence; irreducible Markov transition matrix
UR - http://eudml.org/doc/247824
ER -

References

top
  1. [1] A.G. Postnikov and I.I. Piatetski-Shapiro, A Markov sequence of symbols and a normal continued fraction, Izv. Akad. Nauk SSSR, Ser. Mat., 1957, v.21, 501-514. Zbl0078.31102MR101856
  2. [2] M. Smorodinsky and B. Weiss, Normal sequences for Markov shifts and intrinsically ergodic subshifts, Israel Journal of Mathematics, 1987, v.59, 225-233. Zbl0643.10041MR920084
  3. [3] A. Bertrand-Mathis, Points generiques de Champernowne sur certains systems codes; application aux θ-shifts, Ergod. Th. & Dynam. Sys.,1988, v. 8, 35-51. Zbl0657.28014
  4. [4] N.N. Chentsov, Pseudorandom numbers for modeling Markov chains, U.S.S.R. Comput. Maths. Math. Phis., 1967, vol. 7, no 3, 218-233. Zbl0181.45105
  5. [5] N.M. Korobov, Exponential sums and their applications, Dordrecht, 1992, 209 pages. Zbl0754.11022MR1162539
  6. [6] U.N. Sahov, Imitation of simplist Markov processes, Izv. Akad. Nauk SSSR, Ser. Mathem., 1959, v.23, 815-822. MR114241
  7. [7] U.N. Sahov, The construction of sequence of signs that is normal in the sen se of Markov, Moskovskii Gosudarstvennyi Pedagogiceskii institute im. V.I. Lenina, Ucenye Zapiski, 1971, v. 375,143-155. 
  8. [8] W. Feller, An Introduction to Probability Theory and Its Applications, vol.1, New York, 1965. Zbl0039.13201
  9. [9] J.L. Kemeny and J.L. Snell, Finite Markov chains, New York, 1960, 210 pages. Zbl0089.13704MR115196
  10. [10] I.S. Berezin and N.P. Zhidkov, Computing methods, vol. 2, Pergamon Press, Oxford, 1965, 267, 268. Zbl0122.12903
  11. [11] N.M. Korobov, Distribution of fractional parts of exponential function, Vestnic Moskov. Univ.,Ser.1 Mat. Meh., 1966, v. 21, no. 4, 42-46. Zbl0154.04801MR197435
  12. [12] M.B. Levin, The distribution of fractional parts of the exponential function, Soviet. Math. (Iz. Vuz.), 1977, v. 21, no.11, 41-47. Zbl0389.10037MR506058
  13. [13] U.N. Sahov, Some bounds in the construction of Bernoulli-normal sequences of signs, Math. Notes, 1971, v. 10, 724-730. Zbl0248.65071
  14. [14] M.B. Levin, On normal sequence for Markov and Bernoulli shifts, 49-53, Proccedings of the Israel Mathematical Union Conference,1994, Beer Sheva, 97-100. 
  15. [15] W. Philipp, Limit theorems for lacunary series and uniform distribution mod 1, Acta Arithm., 1975, v. 26, 241-251. Zbl0263.10020MR379420

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.