Galois structure of ideals in wildly ramified abelian -extensions of a -adic field, and some applications
Journal de théorie des nombres de Bordeaux (1997)
- Volume: 9, Issue: 1, page 201-219
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topByott, Nigel P.. "Galois structure of ideals in wildly ramified abelian $p$-extensions of a $p$-adic field, and some applications." Journal de théorie des nombres de Bordeaux 9.1 (1997): 201-219. <http://eudml.org/doc/247997>.
@article{Byott1997,
abstract = {Let $K$ be a finite extension of $\mathbb \{Q\}_p$ with ramification index $e$, and let $L/K$ be a finite abelian $p$-extension with Galois group $\Gamma $ and ramification index $p^n$. We give a criterion in terms of the ramification numbers $t_i$ for a fractional ideal $\mathfrak \{P\}^h$ of the valuation ring $S$ of $L$ not to be free over its associated order $\mathfrak \{A\} (K \Gamma ; \mathfrak \{P\}^h)$. In particular, if $t_n - [t_n/p] < p^\{n-1\}e$ then the inverse different can be free over its associated order only when $t_i \equiv -1$ (mod $p^n$) for all $i$. We give three consequences of this. Firstly, if $\mathfrak \{A\} (K \Gamma ; S)$ is a Hopf order and $S$ is $\mathfrak \{A\} (K \Gamma ; S)$-Galois then $t_i \equiv -1$ (mod $p^n$) for all $i$. Secondly, if $K = k_r \, L = k_\{m+r\}$ are Lubin-Tate division fields, with $m > r$ and $k \ne \mathbb \{Q\}_p$, then $S$ is not free over ($\mathfrak \{A\} (K \Gamma ; S)$. Thirdly, these extensions $k_\{m+r\}/k_r$ admit two Hopf Galois structures exhibiting different behaviour at integral level.},
author = {Byott, Nigel P.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Galois module structure; associated order; Hopf order; Lubin-Tate formal group; associated orders; Galois modules; ramification; Hopf Galois extensions; -adic field; finite abelian -extension; Kummer theory},
language = {eng},
number = {1},
pages = {201-219},
publisher = {Université Bordeaux I},
title = {Galois structure of ideals in wildly ramified abelian $p$-extensions of a $p$-adic field, and some applications},
url = {http://eudml.org/doc/247997},
volume = {9},
year = {1997},
}
TY - JOUR
AU - Byott, Nigel P.
TI - Galois structure of ideals in wildly ramified abelian $p$-extensions of a $p$-adic field, and some applications
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 1
SP - 201
EP - 219
AB - Let $K$ be a finite extension of $\mathbb {Q}_p$ with ramification index $e$, and let $L/K$ be a finite abelian $p$-extension with Galois group $\Gamma $ and ramification index $p^n$. We give a criterion in terms of the ramification numbers $t_i$ for a fractional ideal $\mathfrak {P}^h$ of the valuation ring $S$ of $L$ not to be free over its associated order $\mathfrak {A} (K \Gamma ; \mathfrak {P}^h)$. In particular, if $t_n - [t_n/p] < p^{n-1}e$ then the inverse different can be free over its associated order only when $t_i \equiv -1$ (mod $p^n$) for all $i$. We give three consequences of this. Firstly, if $\mathfrak {A} (K \Gamma ; S)$ is a Hopf order and $S$ is $\mathfrak {A} (K \Gamma ; S)$-Galois then $t_i \equiv -1$ (mod $p^n$) for all $i$. Secondly, if $K = k_r \, L = k_{m+r}$ are Lubin-Tate division fields, with $m > r$ and $k \ne \mathbb {Q}_p$, then $S$ is not free over ($\mathfrak {A} (K \Gamma ; S)$. Thirdly, these extensions $k_{m+r}/k_r$ admit two Hopf Galois structures exhibiting different behaviour at integral level.
LA - eng
KW - Galois module structure; associated order; Hopf order; Lubin-Tate formal group; associated orders; Galois modules; ramification; Hopf Galois extensions; -adic field; finite abelian -extension; Kummer theory
UR - http://eudml.org/doc/247997
ER -
References
top- [Be] A.-M. Bergé, Arithmétique d'une extension galoisienne à groupe d'inertie cyclique, Ann. Inst. Fourier, Grenoble28 (1978), 17-44. Zbl0377.12009MR513880
- [B-F] F. Bertrandias and M.-J. Ferton, Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Sc. Paris274 (1972), A1330-A1333. Zbl0235.12007MR296047
- [Bl-Bu] W. Bley and D. Burns, Über arithmetische assoziierte Ordnungen, J. Number Theory58 (1996), 361-387. Zbl0857.11063MR1393621
- [Bu1] D. Burns, Factorisability and wildly ramified Galois extensions, Ann. Inst. Fourier, Grenoble41 (1991), 393-430. Zbl0727.11048MR1137291
- [Bu2] D. Burns, On the equivariant structure of ideals in Galois extensions of fields, Preprint, King's CollegeLondon (1996).
- [By1] N.P. Byott, Some self-dual rings of integers not free over their associated orders, Math. Proc. Camb. Phil. Soc.110 (1991), 5-10; Corrigendum116 (1994), 569. Zbl0737.11037MR1104596
- [By2] N. Byott, On Galois isomorphisms between ideals in extensions of local fields, Manuscripta Math.73 (1991), 289-311. Zbl0771.11047MR1132141
- [By3] N.P. Byott, Tame and Galois extensions with respect to Hopf orders, Math. Z.220 (1995), 495-522. Zbl0841.16021MR1363852
- [By4] N.P. Byott, Uniqueness of Hopf Galois structure for separable field extensions, Comm. Alg.24 (1996), 3217-3228; Corrigendum24 (1996), 3705. Zbl0878.12001MR1402555
- [By5] N.P. Byott, Associated orders of certain extensions arising from Lubin- Tate formal groups, to appear in J. de Théorie des Nombres de Bordeaux. Zbl0902.11052MR1617408
- [By-L] N.P. Byott and G. Lettl, Relative Galois module structure of integers in abelian fields, J. de Théorie des Nombres de Bordeaux8 (1996), 125-141. Zbl0859.11059MR1399950
- [C-L] S.-P. Chan and C.-H. Lim, The associated orders of rings of integers in Lubin-Tate division fields over the p-adic number field, Ill. J. Math.39 (1995), 30-38. Zbl0816.11061MR1299647
- [C] L.N. Childs, Taming wild extensions with Hopf algebras, Trans. Am. Math. Soc.304 (1987), 111-140. Zbl0632.12013MR906809
- [C-M] L.N. Childs and D.J. Moss, Hopf algebras and local Galois module theory, in Advances in Hopf Algebras, Lect. Notes Pure and Appl. Math. Series, Vol. 158 (J. Bergen and S. Montgomery, eds.), Dekker, 1994, pp. 1-14. Zbl0826.16035MR1289419
- [E] G.G. Elder, Galois module structure of ideals in wildly ramified cyclic extensions of degree p2, Ann. Inst. Fourier, Grenoble45 (1995), 625-647. Zbl0820.11070MR1340947
- [E-M] G.G. Elder and M.L. Madan, Galois module structure of the integers in wildly ramified cyclic extensions, J. Number Theory47 (1994), 138-174. Zbl0801.11046MR1275759
- [F] M.-J. Ferton, Sur les idéaux d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Paris276 (1973), A1483-A1486. Zbl0268.12006MR332733
- [G] C. Greither, Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring, Math. Z.210 (1992), 37-67. Zbl0737.11038MR1161169
- [G-P] C. Greither and B. Pareigis, Hopf Galois theory for separable field extensions, J. Algebra106 (1987), 239-258. Zbl0615.12026MR878476
- [L] H.-W. Leopoldt, Uber die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine u. angew. Math.201 (1959), 119-149. Zbl0098.03403MR108479
- [RC-VS-M] M. Rzedowski Calderón, G.D. Villa Salvador and M.L. Madan, Galois module structure of rings of integers, Math. Z.204 (1990), 401-424. Zbl0682.12003MR1107472
- [S1] J.-P. Serre, Local Class Field Theory, in Algebraic Number Theory (J.W.S. Cassels and A. Fröhlich, eds.), Academic Press, 1967. MR220701
- [S2] J.-P. Serre, Local fields (Graduate Texts in Mathematics, Vol. 67), Springer, 1979. Zbl0423.12016MR554237
- [T1] M.J. Taylor, Formal groups and the Galois module structure of local rings of integers, J. reine angew. Math.358 (1985), 97-103. Zbl0582.12008MR797677
- [T2] M.J. Taylor, Hopf structure and the Kummer theory of formal groups, J. reine angew. Math.375/376 (1987), 1-11. Zbl0609.12015MR882287
- [U] S. Ullom, Integral normal bases in Galois extensions of local fields, Nagoya Math. J.39 (1970), 141-148. Zbl0199.08401MR263790
- [V1] S.V. Vostokov, Ideals of an abelian p-extension of an irregular local field as Galois modules, Zap. Nauchn. Sem. Lening. Otdel. Math. Inst. Steklov. (LOMI) 46 (1974), 14-35; English transl. in J. Soviet Math.9 (1978), 299-317. Zbl0396.12016MR371865
- [V2] S.V. Vostokov, Ideals of an abelian p-extension of a local field as Galois module, Zap. Nauchn. Sem. Lening. Otdel. Math. Inst. Steklov. (LOMI) 57 (1976), 64-84; English transl. in J. Soviet Math.11 (1979), 567-584. Zbl0403.12017MR453708
- [W] W.C. Waterhouse, Normal basis implies Galois for coconnected Hopf algebras, Preprint, Pennsylvania State University (1992).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.