On the non-commutative neutrix product ln x + x + - s

Brian Fisher; Adem Kiliçman; Blagovest Damyanov; J. C. Ault

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 2, page 229-239
  • ISSN: 0010-2628

Abstract

top
The non-commutative neutrix product of the distributions ln x + and x + - s is proved to exist for s = 1 , 2 , ... and is evaluated for s = 1 , 2 . The existence of the non-commutative neutrix product of the distributions x + - r and x + - s is then deduced for r , s = 1 , 2 , ... and evaluated for r = s = 1 .

How to cite

top

Fisher, Brian, et al. "On the non-commutative neutrix product $\ln x_+\circ x_+^{-s}$." Commentationes Mathematicae Universitatis Carolinae 37.2 (1996): 229-239. <http://eudml.org/doc/247883>.

@article{Fisher1996,
abstract = {The non-commutative neutrix product of the distributions $\ln x_+$ and $x_+^\{-s\} $ is proved to exist for $s=1,2, \ldots $ and is evaluated for $s=1,2$. The existence of the non-commutative neutrix product of the distributions $x_+^\{-r\}$ and $x_+ ^\{-s\}$ is then deduced for $r,s= 1,2, \ldots $ and evaluated for $r=s=1$.},
author = {Fisher, Brian, Kiliçman, Adem, Damyanov, Blagovest, Ault, J. C.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {distribution; delta-function; neutrix; neutrix limit; neutrix product; delta-function; neutrix limit; non-commutative neutrix product; distributions},
language = {eng},
number = {2},
pages = {229-239},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the non-commutative neutrix product $\ln x_+\circ x_+^\{-s\}$},
url = {http://eudml.org/doc/247883},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Fisher, Brian
AU - Kiliçman, Adem
AU - Damyanov, Blagovest
AU - Ault, J. C.
TI - On the non-commutative neutrix product $\ln x_+\circ x_+^{-s}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 2
SP - 229
EP - 239
AB - The non-commutative neutrix product of the distributions $\ln x_+$ and $x_+^{-s} $ is proved to exist for $s=1,2, \ldots $ and is evaluated for $s=1,2$. The existence of the non-commutative neutrix product of the distributions $x_+^{-r}$ and $x_+ ^{-s}$ is then deduced for $r,s= 1,2, \ldots $ and evaluated for $r=s=1$.
LA - eng
KW - distribution; delta-function; neutrix; neutrix limit; neutrix product; delta-function; neutrix limit; non-commutative neutrix product; distributions
UR - http://eudml.org/doc/247883
ER -

References

top
  1. van der Corput J.G., Introduction to the neutrix calculus, J. Analyse Math. 7 (1959-60), 291-398. (1959-60) Zbl0097.10503MR0124678
  2. Fisher B., The product of distributions, Quart. J. Math. Oxford (2) 22 (1971), 291-298. (1971) Zbl0213.13104MR0287308
  3. Fisher B., On defining the product of distributions, Math. Nachr. 99 (1980), 239-249. (1980) Zbl0468.46027MR0637662
  4. Fisher B., A non-commutative neutrix product of distributions, Math. Nachr. 108 (1982), 117-127. (1982) Zbl0522.46025
  5. Fisher B., Some results on the non-commutative neutrix product of distributions, Trabajos de Matematica 44, Buenos Aires, 1983. Zbl1171.46031
  6. Fisher B., Kiliçman A., The non-commutative neutrix product of the distributions x + - r and x - - s , Math. Balkanica 8 (2-3) (1994), 251-258. (1994) MR1338782
  7. Fisher B., Savaş E., Pehlivan S., Özçağ E., Results on the non-commutative neutrix product of distributions, Math. Balkanica 7 (1993), 347-356. (1993) MR1269889
  8. Gel'fand I.M., Shilov G.E., Generalized Functions, Vol. I, Academic Press, 1964. Zbl0159.18301MR0166596
  9. Kiliçman A., Fisher B., On the non-commutative neutrix product ( x + r ln x + ) x - - s , submitted for publication. 
  10. Özçağ E., Fisher B., On defining the distribution x + - r ln s x + , Rostock. Math. Kolloq. 42 (1990), 25-40. (1990) MR1116728

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.