The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the non-commutative neutrix product ln x + x + - s

On approximation of functions by certain operators preserving x 2

Lucyna Rempulska, Karolina Tomczak (2008)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving e k ( x ) = x k , k = 0 , 2 . Using a modification of certain operators L n preserving e 0 and e 1 , we introduce operators L n * which preserve e 0 and e 2 and next we define operators L n ; r * for r -times differentiable functions. We show that L n * and L n ; r * have better approximation properties than L n and L n ; r .

A note on the strong maximal operator on ℝⁿ

Jiecheng Chen, Xiangrong Zhu (2004)

Studia Mathematica

Similarity:

We prove that for f ∈ L ln⁺L(ℝⁿ) with compact support, there is a g ∈ L ln⁺L(ℝⁿ) such that (a) g and f are equidistributed, (b) M S ( g ) L ¹ ( E ) for any measurable set E of finite measure.

Maximal distributional chaos of weighted shift operators on Köthe sequence spaces

Xinxing Wu (2014)

Czechoslovak Mathematical Journal

Similarity:

During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator B w n : λ p ( A ) λ p ( A ) defined on the Köthe sequence space λ p ( A ) exhibits distributional ϵ -chaos for any 0 < ϵ < diam λ p ( A ) and any n is obtained. Under this assumption, the principal measure of B w n is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional ϵ -chaos for any...