Gradient estimates for elliptic systems in Carnot-Carathéodory spaces
Giuseppe Di Fazio; Maria Stella Fanciullo
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 4, page 605-618
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDi Fazio, Giuseppe, and Fanciullo, Maria Stella. "Gradient estimates for elliptic systems in Carnot-Carathéodory spaces." Commentationes Mathematicae Universitatis Carolinae 43.4 (2002): 605-618. <http://eudml.org/doc/249009>.
@article{DiFazio2002,
abstract = {Let $X=(X_1,X_2,\dots ,X_q)$ be a system of vector fields satisfying the Hörmander condition. We prove $L^\{2,\lambda \}_X$ local regularity for the gradient $Xu$ of a solution of the following strongly elliptic system \[ -X^\{*\}\_\{\alpha \}(a^\{\alpha \beta \}\_\{ij\}(x)X\_\{\beta \} u^\{j\})= g\_\{i\}-X^\{*\}\_\{\alpha \} f^\{\alpha \}\_\{i\}(x) \quad \forall i=1,2,\dots ,N, \]
where $a^\{\alpha \beta \}_\{ij\}(x)$ are bounded functions and belong to Vanishing Mean Oscillation space.},
author = {Di Fazio, Giuseppe, Fanciullo, Maria Stella},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic systems; Morrey space regularity; Carnot-Carathéodory metric; regularity of weak solutions of elliptic systems; VMO spaces; Carnot-Carathéodory spaces; Hörmander vector fields; Morrey spaces},
language = {eng},
number = {4},
pages = {605-618},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Gradient estimates for elliptic systems in Carnot-Carathéodory spaces},
url = {http://eudml.org/doc/249009},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Di Fazio, Giuseppe
AU - Fanciullo, Maria Stella
TI - Gradient estimates for elliptic systems in Carnot-Carathéodory spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 4
SP - 605
EP - 618
AB - Let $X=(X_1,X_2,\dots ,X_q)$ be a system of vector fields satisfying the Hörmander condition. We prove $L^{2,\lambda }_X$ local regularity for the gradient $Xu$ of a solution of the following strongly elliptic system \[ -X^{*}_{\alpha }(a^{\alpha \beta }_{ij}(x)X_{\beta } u^{j})= g_{i}-X^{*}_{\alpha } f^{\alpha }_{i}(x) \quad \forall i=1,2,\dots ,N, \]
where $a^{\alpha \beta }_{ij}(x)$ are bounded functions and belong to Vanishing Mean Oscillation space.
LA - eng
KW - elliptic systems; Morrey space regularity; Carnot-Carathéodory metric; regularity of weak solutions of elliptic systems; VMO spaces; Carnot-Carathéodory spaces; Hörmander vector fields; Morrey spaces
UR - http://eudml.org/doc/249009
ER -
References
top- Acquistapace P., On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl. (4) 161 (1992), 231-269. (1992) Zbl0802.35015MR1174819
- Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. XII (1959), 623-727. (1959) Zbl0093.10401MR0125307
- Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. XVII (1964), 35-92. (1964) Zbl0123.28706MR0162050
- Bramanti M., Brandolini L., estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc. 352 2 (2000), 781-822. (2000) MR1608289
- Bramanti M., Brandolini L., estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups, to appear in Rend. Sem. Mat. Univ. Politec. Torino. Zbl0935.35037MR1962808
- Bramanti M., Brandolini L., Estimates of BMO type for singular integrals on spaces of homogeneous type and applications to hypoelliptic pdes, preprint. Zbl1082.35060MR2174915
- Bramanti M., Cerutti M.C., Solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. Partial Differential Equations 18 (1993), 1735-1763. (1993) Zbl0816.35045MR1239929
- Burger N., Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C.R. Acad. Sci. Paris Série A 286 (1978), 139-142. (1978) Zbl0368.46037MR0467176
- Campanato S., Equazioni ellittiche del II ordine e spazi , Ann. Mat. Pura Appl. (4) 69 (1965), 321-381. (1965) MR0192168
- Campanato S., Sistemi ellittici in forma di divergenza. Regolarità all'interno, Quaderni SNS Pisa (1980). MR0668196
- Cordes H.O., Zero order a priori estimates for solutions of elliptic differential equations, Proceedings of Symposia in Pure Mathematics IV (1961), 157-166. Zbl0178.46001MR0146511
- Chiarenza F., Franciosi M., Frasca M., estimates for linear elliptic systems with discontinuous coefficients, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5 (1994), 1 27-32. (1994) Zbl0803.35016MR1273890
- Chiarenza F., Frasca M., Longo P., Interior -estimates for nondivergence elliptic equations with discontinuous coefficients Ricerche Mat., XL (1991), 149-168. (1991) Zbl0772.35017MR1191890
- Chiarenza F., Frasca M., Longo P., -solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 1 841-853. (1993) MR1088476
- Danielli D., A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Anal. 11 (1999), 387-413. (1999) MR1719837
- Danielli D., Garofalo N., Nhieu D.M., Trace inequalities for Carnot-Carathéodory spaces and applications, Ann. SNS Pisa Cl. Sci. (4) 27 (1998), 195-252. (1998) MR1664688
- Di Fazio G., estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7) 10 (1996), 2 409-420. (1996) MR1405255
- Di Fazio G., Palagachev D.K., Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients, Comment. Math. Univ. Carolinae 37 (1996), 3 537-556. (1996) MR1426919
- Di Fazio G., Palagachev D.K., Oblique derivative problem for quasilinear elliptic equations with VMO coefficients, Bull. Austral. Math. Soc. 53 (1996), 3 501-513. (1996) MR1388600
- Di Fazio G., Ragusa M.A., Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal. 112 (1993), 2 241-256. (1993) MR1213138
- Di Fazio G., Palagachev D.K., Ragusa M.A., Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal. 166 (1999), 2 179-196. (1999) MR1707751
- Franchi B., Gallot S., Wheeden R.L., Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 4 557-571. (1994) MR1314734
- Franchi B., Gutiérrez C.E., Wheeden R.L., Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604. (1994) MR1265808
- Franchi B., Serra Cassano F., Regularité partielle pour une classe de systèmes elliptiques dégénérés, C.R. Acad. Sci. Paris Série I 316 (1993), 37-40. (1993) MR1198746
- Garofalo N., Recent Developments in the Theory of Subelliptic Equations and its Geometric Aspects, Birkhäuser, to appear.
- Garofalo N., Nhieu D.M., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. XLIX (1996), 1081-1144. (1996) MR1404326
- Geisler M., Morrey-Campanato spaces on manifolds, Comment. Math. Univ. Carolinae 29 (1988), 2 309-318. (1988) MR0957401
- Gianazza U., Higher Integrability for quasi- minima of functionals depending on vector fields, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 17 (1993), 209-227. (1993) MR1268631
- Giaquinta M., Multiple integrals in calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105 (1983), Princeton University Press. (1983) MR0717034
- Giaquinta M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. Zbl0786.35001MR1239172
- Gromov M., Carnot-Carathéodory spaces seen from within, Inst. Hautes Études Sci. Publ. Math. (1994).
- Guidetti D., General linear boundary value problems for elliptic operators with VMO coefficients, Math. Nachr. 237 (2002), 62-88. (2002) Zbl1009.35024MR1894353
- Hajłasz P., Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. (1996)
- Hajłasz P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688. MR1683160
- Hörmander L., Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. (1967) MR0222474
- Huang Q., Estimates on the Generalized Morrey spaces and BMO for linear elliptic systems, Indiana Univ. Math. J. 45 2 (1996), 397-439. (1996) MR1414336
- Lu G., Embedding theorems on Campanato-Morrey space for vector fields on Hörmander type, Approx. Theory Appl. (N.S.) 14 (1998), 1 69-80. (1998) MR1651473
- Lu G., Embedding theorems on Campanato-Morrey space for vector fields and applications, C.R. Acad. Sci. Paris Série. I 320 (1995), 4 429-434. (1995) MR1320116
- Miranda C., Sulle equazioni ellittiche del secondo ordine a coefficienti discontinui, Ann. Mat. Pura Appl. 63 (1963), 353-386. (1963) MR0170090
- Sánchez-Calle A., Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. (1984) MR0762360
- Sarason D., Functions of vanishing mean oscillations, Trans. Amer. Math. Soc. 207 (1975), 391-405. (1975) MR0377518
- Trudinger N.S., Wang X.J., On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math. 124 (2002), 2 369-410. (2002) Zbl1067.35023MR1890997
- Xu C.-J., Subelliptic variational problems, Bull. Soc. Math. France 118 (1990), 147-169. (1990) MR1087376
- Xu C.-J., Zuily C., Higher interior regularity for quasilinear subellliptic systems, Calc. Var. 5 (1997), 323-343. (1997) MR1450714
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.