Gradient estimates for elliptic systems in Carnot-Carathéodory spaces

Giuseppe Di Fazio; Maria Stella Fanciullo

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 4, page 605-618
  • ISSN: 0010-2628

Abstract

top
Let X = ( X 1 , X 2 , , X q ) be a system of vector fields satisfying the Hörmander condition. We prove L X 2 , λ local regularity for the gradient X u of a solution of the following strongly elliptic system - X α * ( a i j α β ( x ) X β u j ) = g i - X α * f i α ( x ) i = 1 , 2 , , N , where a i j α β ( x ) are bounded functions and belong to Vanishing Mean Oscillation space.

How to cite

top

Di Fazio, Giuseppe, and Fanciullo, Maria Stella. "Gradient estimates for elliptic systems in Carnot-Carathéodory spaces." Commentationes Mathematicae Universitatis Carolinae 43.4 (2002): 605-618. <http://eudml.org/doc/249009>.

@article{DiFazio2002,
abstract = {Let $X=(X_1,X_2,\dots ,X_q)$ be a system of vector fields satisfying the Hörmander condition. We prove $L^\{2,\lambda \}_X$ local regularity for the gradient $Xu$ of a solution of the following strongly elliptic system \[ -X^\{*\}\_\{\alpha \}(a^\{\alpha \beta \}\_\{ij\}(x)X\_\{\beta \} u^\{j\})= g\_\{i\}-X^\{*\}\_\{\alpha \} f^\{\alpha \}\_\{i\}(x) \quad \forall i=1,2,\dots ,N, \] where $a^\{\alpha \beta \}_\{ij\}(x)$ are bounded functions and belong to Vanishing Mean Oscillation space.},
author = {Di Fazio, Giuseppe, Fanciullo, Maria Stella},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic systems; Morrey space regularity; Carnot-Carathéodory metric; regularity of weak solutions of elliptic systems; VMO spaces; Carnot-Carathéodory spaces; Hörmander vector fields; Morrey spaces},
language = {eng},
number = {4},
pages = {605-618},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Gradient estimates for elliptic systems in Carnot-Carathéodory spaces},
url = {http://eudml.org/doc/249009},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Di Fazio, Giuseppe
AU - Fanciullo, Maria Stella
TI - Gradient estimates for elliptic systems in Carnot-Carathéodory spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 4
SP - 605
EP - 618
AB - Let $X=(X_1,X_2,\dots ,X_q)$ be a system of vector fields satisfying the Hörmander condition. We prove $L^{2,\lambda }_X$ local regularity for the gradient $Xu$ of a solution of the following strongly elliptic system \[ -X^{*}_{\alpha }(a^{\alpha \beta }_{ij}(x)X_{\beta } u^{j})= g_{i}-X^{*}_{\alpha } f^{\alpha }_{i}(x) \quad \forall i=1,2,\dots ,N, \] where $a^{\alpha \beta }_{ij}(x)$ are bounded functions and belong to Vanishing Mean Oscillation space.
LA - eng
KW - elliptic systems; Morrey space regularity; Carnot-Carathéodory metric; regularity of weak solutions of elliptic systems; VMO spaces; Carnot-Carathéodory spaces; Hörmander vector fields; Morrey spaces
UR - http://eudml.org/doc/249009
ER -

References

top
  1. Acquistapace P., On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl. (4) 161 (1992), 231-269. (1992) Zbl0802.35015MR1174819
  2. Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. XII (1959), 623-727. (1959) Zbl0093.10401MR0125307
  3. Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. XVII (1964), 35-92. (1964) Zbl0123.28706MR0162050
  4. Bramanti M., Brandolini L., L p estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc. 352 2 (2000), 781-822. (2000) MR1608289
  5. Bramanti M., Brandolini L., L p estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups, to appear in Rend. Sem. Mat. Univ. Politec. Torino. Zbl0935.35037MR1962808
  6. Bramanti M., Brandolini L., Estimates of BMO type for singular integrals on spaces of homogeneous type and applications to hypoelliptic pdes, preprint. Zbl1082.35060MR2174915
  7. Bramanti M., Cerutti M.C., W p 1 , 2 Solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. Partial Differential Equations 18 (1993), 1735-1763. (1993) Zbl0816.35045MR1239929
  8. Burger N., Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C.R. Acad. Sci. Paris Série A 286 (1978), 139-142. (1978) Zbl0368.46037MR0467176
  9. Campanato S., Equazioni ellittiche del II ordine e spazi ( 2 , λ ) , Ann. Mat. Pura Appl. (4) 69 (1965), 321-381. (1965) MR0192168
  10. Campanato S., Sistemi ellittici in forma di divergenza. Regolarità all'interno, Quaderni SNS Pisa (1980). MR0668196
  11. Cordes H.O., Zero order a priori estimates for solutions of elliptic differential equations, Proceedings of Symposia in Pure Mathematics IV (1961), 157-166. Zbl0178.46001MR0146511
  12. Chiarenza F., Franciosi M., Frasca M., L p estimates for linear elliptic systems with discontinuous coefficients, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5 (1994), 1 27-32. (1994) Zbl0803.35016MR1273890
  13. Chiarenza F., Frasca M., Longo P., Interior W 2 , p -estimates for nondivergence elliptic equations with discontinuous coefficients Ricerche Mat., XL (1991), 149-168. (1991) Zbl0772.35017MR1191890
  14. Chiarenza F., Frasca M., Longo P., W 2 , p -solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 1 841-853. (1993) MR1088476
  15. Danielli D., A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Anal. 11 (1999), 387-413. (1999) MR1719837
  16. Danielli D., Garofalo N., Nhieu D.M., Trace inequalities for Carnot-Carathéodory spaces and applications, Ann. SNS Pisa Cl. Sci. (4) 27 (1998), 195-252. (1998) MR1664688
  17. Di Fazio G., L p estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7) 10 (1996), 2 409-420. (1996) MR1405255
  18. Di Fazio G., Palagachev D.K., Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients, Comment. Math. Univ. Carolinae 37 (1996), 3 537-556. (1996) MR1426919
  19. Di Fazio G., Palagachev D.K., Oblique derivative problem for quasilinear elliptic equations with VMO coefficients, Bull. Austral. Math. Soc. 53 (1996), 3 501-513. (1996) MR1388600
  20. Di Fazio G., Ragusa M.A., Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal. 112 (1993), 2 241-256. (1993) MR1213138
  21. Di Fazio G., Palagachev D.K., Ragusa M.A., Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal. 166 (1999), 2 179-196. (1999) MR1707751
  22. Franchi B., Gallot S., Wheeden R.L., Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 4 557-571. (1994) MR1314734
  23. Franchi B., Gutiérrez C.E., Wheeden R.L., Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604. (1994) MR1265808
  24. Franchi B., Serra Cassano F., Regularité partielle pour une classe de systèmes elliptiques dégénérés, C.R. Acad. Sci. Paris Série I 316 (1993), 37-40. (1993) MR1198746
  25. Garofalo N., Recent Developments in the Theory of Subelliptic Equations and its Geometric Aspects, Birkhäuser, to appear. 
  26. Garofalo N., Nhieu D.M., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. XLIX (1996), 1081-1144. (1996) MR1404326
  27. Geisler M., Morrey-Campanato spaces on manifolds, Comment. Math. Univ. Carolinae 29 (1988), 2 309-318. (1988) MR0957401
  28. Gianazza U., Higher Integrability for quasi- minima of functionals depending on vector fields, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 17 (1993), 209-227. (1993) MR1268631
  29. Giaquinta M., Multiple integrals in calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105 (1983), Princeton University Press. (1983) MR0717034
  30. Giaquinta M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. Zbl0786.35001MR1239172
  31. Gromov M., Carnot-Carathéodory spaces seen from within, Inst. Hautes Études Sci. Publ. Math. (1994). 
  32. Guidetti D., General linear boundary value problems for elliptic operators with VMO coefficients, Math. Nachr. 237 (2002), 62-88. (2002) Zbl1009.35024MR1894353
  33. Hajłasz P., Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. (1996) 
  34. Hajłasz P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688. MR1683160
  35. Hörmander L., Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. (1967) MR0222474
  36. Huang Q., Estimates on the Generalized Morrey spaces L ϕ 2 , λ and BMO for linear elliptic systems, Indiana Univ. Math. J. 45 2 (1996), 397-439. (1996) MR1414336
  37. Lu G., Embedding theorems on Campanato-Morrey space for vector fields on Hörmander type, Approx. Theory Appl. (N.S.) 14 (1998), 1 69-80. (1998) MR1651473
  38. Lu G., Embedding theorems on Campanato-Morrey space for vector fields and applications, C.R. Acad. Sci. Paris Série. I 320 (1995), 4 429-434. (1995) MR1320116
  39. Miranda C., Sulle equazioni ellittiche del secondo ordine a coefficienti discontinui, Ann. Mat. Pura Appl. 63 (1963), 353-386. (1963) MR0170090
  40. Sánchez-Calle A., Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. (1984) MR0762360
  41. Sarason D., Functions of vanishing mean oscillations, Trans. Amer. Math. Soc. 207 (1975), 391-405. (1975) MR0377518
  42. Trudinger N.S., Wang X.J., On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math. 124 (2002), 2 369-410. (2002) Zbl1067.35023MR1890997
  43. Xu C.-J., Subelliptic variational problems, Bull. Soc. Math. France 118 (1990), 147-169. (1990) MR1087376
  44. Xu C.-J., Zuily C., Higher interior regularity for quasilinear subellliptic systems, Calc. Var. 5 (1997), 323-343. (1997) MR1450714

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.