On normal homogeneous Einstein manifolds

McKenzie Y. Wang; Wolfgang Ziller

Annales scientifiques de l'École Normale Supérieure (1985)

  • Volume: 18, Issue: 4, page 563-633
  • ISSN: 0012-9593

How to cite

top

Wang, McKenzie Y., and Ziller, Wolfgang. "On normal homogeneous Einstein manifolds." Annales scientifiques de l'École Normale Supérieure 18.4 (1985): 563-633. <http://eudml.org/doc/82166>.

@article{Wang1985,
author = {Wang, McKenzie Y., Ziller, Wolfgang},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {left-invariant metric; normal homogeneous metric; simple Lie groups; Einstein manifolds},
language = {eng},
number = {4},
pages = {563-633},
publisher = {Elsevier},
title = {On normal homogeneous Einstein manifolds},
url = {http://eudml.org/doc/82166},
volume = {18},
year = {1985},
}

TY - JOUR
AU - Wang, McKenzie Y.
AU - Ziller, Wolfgang
TI - On normal homogeneous Einstein manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1985
PB - Elsevier
VL - 18
IS - 4
SP - 563
EP - 633
LA - eng
KW - left-invariant metric; normal homogeneous metric; simple Lie groups; Einstein manifolds
UR - http://eudml.org/doc/82166
ER -

References

top
  1. [1] A. BOREL, Köhlerian Coset Spaces of Semi-simple Lie groups (Proc. Nat. Acad. Sci., U.S.A., Vol. 40, 1954, pp. 1147-1151). Zbl0058.16002MR77878
  2. [2] A. BESSE, Einstein Manifolds (to appear in "Ergebnisse der Mathematik", Spinger Verlag). Zbl0613.53001MR867684
  3. [3] M. BERGER, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive (Ann. Sci. Norm. Sup. Pisa, Vol. 15, 1961, pp. 179-246). Zbl0101.14201MR133083
  4. [4] J. P. BOURGUIGNON and H. KARCHER, Curvature Operators : Pinching Estimates and Geometric Examples (Ann. scient. Éc. Norm. Sup., Vol. 11, 1978, pp. 71-92). Zbl0386.53031MR493867
  5. [5] A. BOREL and J. DE SIEBENTHAL, Les sous-groupes fermés de rang maximum des groupes de Lie clos (Comm. Math. Helv., Vol. 23, 1949, pp. 200-221). Zbl0034.30701MR32659
  6. [6] Z. I. BOREVICH and I. R. SHAFAREVICH, Number Theory, Academic Press, N.Y., 1966. Zbl0145.04902MR195803
  7. [7] J. E. D'ATRI and W. ZILLER, Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups (Memoirs of the Am. Math. Soc., Vol. 18, No. 215, 1979). Zbl0404.53044MR519928
  8. [8] E. B. DYNKIN, Semi-simple Subalgebras of Semi-simple Lie Algebras (Transl. Am. Math. Soc., Series 2, Vol. 6, 1957, pp. 111-244). Zbl0077.03404
  9. [9] E. B. DYNKIN, Maximal Subalgebras of the Classical Groups (Transl. Am. Math. Soc., Series 2, Vol. 6, 1957, pp. 245-378). Zbl0077.03403MR910539
  10. [10] H. ELIASSON, Die Krümmung des Raumes Sp (2)/SU (2) von Berger (Math. Ann., Vol. 164, 1966, pp. 317-323). Zbl0141.19401MR196679
  11. [11] C. GORDON and W. ZILLER, Naturally Reductive Metrics of Non-positive Ricci Curvature (Proc. Am. Math. Soc.), Vol. 91, 1984, pp. 287-290. Zbl0513.53049MR740188
  12. [12] G. JENSEN, Einstein Metrics on Principal Fibre Bundles (J. Diff. Geom., Vol. 8, 1973, pp. 599-614). Zbl0284.53038MR353209
  13. [13] B. KONSTANT, On Differential Geometry and Homogeneous Spaces, I and II (Proc. Nat. Acad. Sc., U.S.A., Vol. 42, 1956, pp. 258-261 and 354-357). Zbl0075.31603MR88017
  14. [14] B. KOSTANT, The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group (Amer. J. Math., Vol. 81, 1959, pp. 973-1032). Zbl0099.25603MR114875
  15. [15] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, Vol. II, Interscience, N.Y., 1969. Zbl0175.48504
  16. [16] T. MATSUZAWA, Einstein Metrics on Fibred Riemannian Structures (Kodai Math. J., Vol. 6, 1983, pp. 340-345). Zbl0534.53040MR717324
  17. [17] Y. MATSUSHIMA, Remarks on Köhler-Einstein Manifolds (Nagoya Math. J., Vol. 46, 1972, pp. 161-173). Zbl0249.53050MR303478
  18. [18] A. L. ONIŠČIK, Inclusion Relations Among Transitive Compact Transformation Groups (Transl. Amer. Math. Soc., Series 2, Vol. 50, 1966, pp. 5-58). Zbl0207.33604
  19. [19] A. L. ONIŠČIK, On Transitive Compact Transformation Groups (Transl. Amer. Math. Soc., Series 2, Vol. 55, 1966, pp. 153-194). 
  20. [20] A. SAGLE, Some Homogeneous Einstein Manifolds (Nagoya Math. J., Vol. 39, 1970, pp. 81-106). Zbl0198.54801MR271867
  21. [21] M. WANG, Some Examples of Homogeneous Einstein Manifolds in Dimension Seven (Duke Math. J., Vol. 49, 1982, pp. 23-28). Zbl0488.53035MR650366
  22. [22] M. WANG and W. ZILLER, On the Isotropy Representation of a Symmetric Space (to appear in Rend. Sem. Mat. Univers. Politecn. Torino). Zbl0636.53058MR829009
  23. [23] M. WANG and W. ZILLER, Isotropy Irreducible Spaces, Symmetric Spaces, and Maximal Subgroups of Classical Groups (in preparation). Zbl0804.53075
  24. [24] M. WANG and W. ZILLER, Existence and Non-existence of Homogeneous Einstein Metrics, (to appear in Invent. Math.). Zbl0596.53040MR830044
  25. [25] J. A. WOLF, The Geometry and Structure of Isotropy Irreducible Homogeneous Spaces (Acta Mathematica, Vol. 120, 1968, pp. 59-148) ; Correction (Acta Mathematica, Vol. 152, 1984, pp. 141-142). Zbl0157.52102MR736216
  26. [26] J. A. WOLF, Spaces of Constant Curvature, 4th Edition, Publish or Perish Inc., 1977. 
  27. [27] W. ZILLER, Homogeneous Einstein Metrics on Spheres and Projective Spaces (Math. Ann., Vol. 259, 1982, pp. 351-358). Zbl0469.53043MR661203
  28. [28] W. ZILLER, Homogeneous Einstein Metrics (Global Riemannian Geometry, T.J. WILLMORE and N. HITCHIN Eds., John-Wiley, 1984, pp. 126-135). Zbl0615.53038MR757214

Citations in EuDML Documents

top
  1. Yurii G. Nikonorov, Eugene D. Rodionov, Standard homogeneous Einstein manifolds and Diophantine equations
  2. F. Tricerri, L. Vanhecke, Curvature homogeneous riemannian manifolds
  3. Andreas Arvanitoyeorgos, Homogeneous Einstein metrics on Stiefel manifolds
  4. Rui Albuquerque, On the characteristic connection of gwistor space
  5. Cristina Draper Fontanals, Homogeneous Einstein manifolds based on symplectic triple systems
  6. Ilka Agricola, The Srní lectures on non-integrable geometries with torsion

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.