On normal homogeneous Einstein manifolds
McKenzie Y. Wang; Wolfgang Ziller
Annales scientifiques de l'École Normale Supérieure (1985)
- Volume: 18, Issue: 4, page 563-633
- ISSN: 0012-9593
Access Full Article
topHow to cite
topWang, McKenzie Y., and Ziller, Wolfgang. "On normal homogeneous Einstein manifolds." Annales scientifiques de l'École Normale Supérieure 18.4 (1985): 563-633. <http://eudml.org/doc/82166>.
@article{Wang1985,
author = {Wang, McKenzie Y., Ziller, Wolfgang},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {left-invariant metric; normal homogeneous metric; simple Lie groups; Einstein manifolds},
language = {eng},
number = {4},
pages = {563-633},
publisher = {Elsevier},
title = {On normal homogeneous Einstein manifolds},
url = {http://eudml.org/doc/82166},
volume = {18},
year = {1985},
}
TY - JOUR
AU - Wang, McKenzie Y.
AU - Ziller, Wolfgang
TI - On normal homogeneous Einstein manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1985
PB - Elsevier
VL - 18
IS - 4
SP - 563
EP - 633
LA - eng
KW - left-invariant metric; normal homogeneous metric; simple Lie groups; Einstein manifolds
UR - http://eudml.org/doc/82166
ER -
References
top- [1] A. BOREL, Köhlerian Coset Spaces of Semi-simple Lie groups (Proc. Nat. Acad. Sci., U.S.A., Vol. 40, 1954, pp. 1147-1151). Zbl0058.16002MR77878
- [2] A. BESSE, Einstein Manifolds (to appear in "Ergebnisse der Mathematik", Spinger Verlag). Zbl0613.53001MR867684
- [3] M. BERGER, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive (Ann. Sci. Norm. Sup. Pisa, Vol. 15, 1961, pp. 179-246). Zbl0101.14201MR133083
- [4] J. P. BOURGUIGNON and H. KARCHER, Curvature Operators : Pinching Estimates and Geometric Examples (Ann. scient. Éc. Norm. Sup., Vol. 11, 1978, pp. 71-92). Zbl0386.53031MR493867
- [5] A. BOREL and J. DE SIEBENTHAL, Les sous-groupes fermés de rang maximum des groupes de Lie clos (Comm. Math. Helv., Vol. 23, 1949, pp. 200-221). Zbl0034.30701MR32659
- [6] Z. I. BOREVICH and I. R. SHAFAREVICH, Number Theory, Academic Press, N.Y., 1966. Zbl0145.04902MR195803
- [7] J. E. D'ATRI and W. ZILLER, Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups (Memoirs of the Am. Math. Soc., Vol. 18, No. 215, 1979). Zbl0404.53044MR519928
- [8] E. B. DYNKIN, Semi-simple Subalgebras of Semi-simple Lie Algebras (Transl. Am. Math. Soc., Series 2, Vol. 6, 1957, pp. 111-244). Zbl0077.03404
- [9] E. B. DYNKIN, Maximal Subalgebras of the Classical Groups (Transl. Am. Math. Soc., Series 2, Vol. 6, 1957, pp. 245-378). Zbl0077.03403MR910539
- [10] H. ELIASSON, Die Krümmung des Raumes Sp (2)/SU (2) von Berger (Math. Ann., Vol. 164, 1966, pp. 317-323). Zbl0141.19401MR196679
- [11] C. GORDON and W. ZILLER, Naturally Reductive Metrics of Non-positive Ricci Curvature (Proc. Am. Math. Soc.), Vol. 91, 1984, pp. 287-290. Zbl0513.53049MR740188
- [12] G. JENSEN, Einstein Metrics on Principal Fibre Bundles (J. Diff. Geom., Vol. 8, 1973, pp. 599-614). Zbl0284.53038MR353209
- [13] B. KONSTANT, On Differential Geometry and Homogeneous Spaces, I and II (Proc. Nat. Acad. Sc., U.S.A., Vol. 42, 1956, pp. 258-261 and 354-357). Zbl0075.31603MR88017
- [14] B. KOSTANT, The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group (Amer. J. Math., Vol. 81, 1959, pp. 973-1032). Zbl0099.25603MR114875
- [15] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, Vol. II, Interscience, N.Y., 1969. Zbl0175.48504
- [16] T. MATSUZAWA, Einstein Metrics on Fibred Riemannian Structures (Kodai Math. J., Vol. 6, 1983, pp. 340-345). Zbl0534.53040MR717324
- [17] Y. MATSUSHIMA, Remarks on Köhler-Einstein Manifolds (Nagoya Math. J., Vol. 46, 1972, pp. 161-173). Zbl0249.53050MR303478
- [18] A. L. ONIŠČIK, Inclusion Relations Among Transitive Compact Transformation Groups (Transl. Amer. Math. Soc., Series 2, Vol. 50, 1966, pp. 5-58). Zbl0207.33604
- [19] A. L. ONIŠČIK, On Transitive Compact Transformation Groups (Transl. Amer. Math. Soc., Series 2, Vol. 55, 1966, pp. 153-194).
- [20] A. SAGLE, Some Homogeneous Einstein Manifolds (Nagoya Math. J., Vol. 39, 1970, pp. 81-106). Zbl0198.54801MR271867
- [21] M. WANG, Some Examples of Homogeneous Einstein Manifolds in Dimension Seven (Duke Math. J., Vol. 49, 1982, pp. 23-28). Zbl0488.53035MR650366
- [22] M. WANG and W. ZILLER, On the Isotropy Representation of a Symmetric Space (to appear in Rend. Sem. Mat. Univers. Politecn. Torino). Zbl0636.53058MR829009
- [23] M. WANG and W. ZILLER, Isotropy Irreducible Spaces, Symmetric Spaces, and Maximal Subgroups of Classical Groups (in preparation). Zbl0804.53075
- [24] M. WANG and W. ZILLER, Existence and Non-existence of Homogeneous Einstein Metrics, (to appear in Invent. Math.). Zbl0596.53040MR830044
- [25] J. A. WOLF, The Geometry and Structure of Isotropy Irreducible Homogeneous Spaces (Acta Mathematica, Vol. 120, 1968, pp. 59-148) ; Correction (Acta Mathematica, Vol. 152, 1984, pp. 141-142). Zbl0157.52102MR736216
- [26] J. A. WOLF, Spaces of Constant Curvature, 4th Edition, Publish or Perish Inc., 1977.
- [27] W. ZILLER, Homogeneous Einstein Metrics on Spheres and Projective Spaces (Math. Ann., Vol. 259, 1982, pp. 351-358). Zbl0469.53043MR661203
- [28] W. ZILLER, Homogeneous Einstein Metrics (Global Riemannian Geometry, T.J. WILLMORE and N. HITCHIN Eds., John-Wiley, 1984, pp. 126-135). Zbl0615.53038MR757214
Citations in EuDML Documents
top- Yurii G. Nikonorov, Eugene D. Rodionov, Standard homogeneous Einstein manifolds and Diophantine equations
- F. Tricerri, L. Vanhecke, Curvature homogeneous riemannian manifolds
- Andreas Arvanitoyeorgos, Homogeneous Einstein metrics on Stiefel manifolds
- Rui Albuquerque, On the characteristic connection of gwistor space
- Cristina Draper Fontanals, Homogeneous Einstein manifolds based on symplectic triple systems
- Ilka Agricola, The Srní lectures on non-integrable geometries with torsion
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.