On concentrated probabilities on non locally compact groups
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 3, page 635-640
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBartoszek, Wojciech. "On concentrated probabilities on non locally compact groups." Commentationes Mathematicae Universitatis Carolinae 37.3 (1996): 635-640. <http://eudml.org/doc/247932>.
@article{Bartoszek1996,
abstract = {Let $G$ be a Polish group with an invariant metric. We characterize those probability measures $\mu $ on $G$ so that there exist a sequence $g_n \in G$ and a compact set $A \subseteq G$ with $\{\mu \}^\{*n\} (g_n A) \equiv 1$ for all $n$.},
author = {Bartoszek, Wojciech},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {concentration function; random walk; Markov operator; invariant measure; concentrated probability; random walk; Markov operator; Polish group; invariant metric},
language = {eng},
number = {3},
pages = {635-640},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On concentrated probabilities on non locally compact groups},
url = {http://eudml.org/doc/247932},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Bartoszek, Wojciech
TI - On concentrated probabilities on non locally compact groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 3
SP - 635
EP - 640
AB - Let $G$ be a Polish group with an invariant metric. We characterize those probability measures $\mu $ on $G$ so that there exist a sequence $g_n \in G$ and a compact set $A \subseteq G$ with ${\mu }^{*n} (g_n A) \equiv 1$ for all $n$.
LA - eng
KW - concentration function; random walk; Markov operator; invariant measure; concentrated probability; random walk; Markov operator; Polish group; invariant metric
UR - http://eudml.org/doc/247932
ER -
References
top- Bartoszek W., On concentrated probabilities, Ann. Polon. Math. 61.1 (1995), 25-38. (1995) Zbl0856.22006MR1318315
- Bartoszek W., The structure of random walks on semidirect products, Bull. L'Acad. Pol. Sci. ser. Sci. Math. Astr. & Phys. 43.4 (1995), 277-282. (1995) Zbl0849.22006MR1414784
- Csiszár I., On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups, Z. Wahrsch. Verw. Gebiete 5 (1966), 279-299. (1966) MR0205306
- Jaworski W., Rosenblatt J., Willis G., Concentration functions in locally compact groups, preprint, 17 pages, 1995. Zbl0854.43001MR1399711
- Parthasarathy K.R., Introduction to Probability and Measure, New Delhi, 1980. Zbl1075.28001
- Sine R., Geometric theory of a single Markov operator, Pacif. J. Math. 27.1 (1968), 155-166. (1968) Zbl0281.60083MR0240281
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.