Displaying similar documents to “On concentrated probabilities on non locally compact groups”

Finitely-additive, countably-additive and internal probability measures

Haosui Duanmu, William Weiss (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We discuss two ways to construct standard probability measures, called push-down measures, from internal probability measures. We show that the Wasserstein distance between an internal probability measure and its push-down measure is infinitesimal. As an application to standard probability theory, we show that every finitely-additive Borel probability measure P on a separable metric space is a limit of a sequence of countably-additive Borel probability measures { P n } n in the sense that f d P = lim n f d P n ...

Unique Bernoulli g -measures

Anders Johansson, Anders Öberg, Mark Pollicott (2012)

Journal of the European Mathematical Society

Similarity:

We improve and subsume the conditions of Johansson and Öberg and Berbee for uniqueness of a g -measure, i.e., a stationary distribution for chains with complete connections. In addition, we prove that these unique g -measures have Bernoulli natural extensions. We also conclude that we have convergence in the Wasserstein metric of the iterates of the adjoint transfer operator to the g -measure.

Estimates of capacity of self-similar measures

Jozef Myjak, Tomasz Szarek (2002)

Annales Polonici Mathematici

Similarity:

We give lower and upper estimates of the capacity of self-similar measures generated by iterated function systems ( S i , p i ) : i = 1 , . . . , N where S i are bi-lipschitzean transformations.

On Beurling measure algebras

Ross Stokke (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show how the measure theory of regular compacted-Borel measures defined on the δ -ring of compacted-Borel subsets of a weighted locally compact group ( G , ω ) provides a compatible framework for defining the corresponding Beurling measure algebra ( G , ω ) , thus filling a gap in the literature.

On the Law of Large Numbers for Nonmeasurable Identically Distributed Random Variables

Alexander R. Pruss (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let Ω be a countable infinite product Ω of copies of the same probability space Ω₁, and let Ξₙ be the sequence of the coordinate projection functions from Ω to Ω₁. Let Ψ be a possibly nonmeasurable function from Ω₁ to ℝ, and let Xₙ(ω) = Ψ(Ξₙ(ω)). Then we can think of Xₙ as a sequence of independent but possibly nonmeasurable random variables on Ω. Let Sₙ = X₁ + ⋯ + Xₙ. By the ordinary Strong Law of Large Numbers, we almost surely have E * [ X ] l i m i n f S / n l i m s u p S / n E * [ X ] , where E * and E* are the lower and upper expectations....

On Ordinary and Standard Lebesgue Measures on

Gogi Pantsulaia (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

New concepts of Lebesgue measure on are proposed and some of their realizations in the ZFC theory are given. Also, it is shown that Baker’s both measures [1], [2], Mankiewicz and Preiss-Tišer generators [6] and the measure of [4] are not α-standard Lebesgue measures on for α = (1,1,...).

Invariance of the Gibbs measure for the Benjamin–Ono equation

Yu Deng (2015)

Journal of the European Mathematical Society

Similarity:

In this paper we consider the periodic Benjemin-Ono equation.We establish the invariance of the Gibbs measure associated to this equation, thus answering a question raised in Tzvetkov [28]. As an intermediate step, we also obtain a local well-posedness result in Besov-type spaces rougher than L 2 , extending the L 2 well-posedness result of Molinet [20].

Sets of β -expansions and the Hausdorff measure of slices through fractals

Tom Kempton (2016)

Journal of the European Mathematical Society

Similarity:

We study natural measures on sets of β -expansions and on slices through self similar sets. In the setting of β -expansions, these allow us to better understand the measure of maximal entropy for the random β -transformation and to reinterpret a result of Lindenstrauss, Peres and Schlag in terms of equidistribution. Each of these applications is relevant to the study of Bernoulli convolutions. In the fractal setting this allows us to understand how to disintegrate Hausdorff measure by slicing,...

Solvability of the functional equation f = (T-I)h for vector-valued functions

Ryotaro Sato (2004)

Colloquium Mathematicae

Similarity:

Let X be a reflexive Banach space and (Ω,,μ) be a probability measure space. Let T: M(μ;X) → M(μ;X) be a linear operator, where M(μ;X) is the space of all X-valued strongly measurable functions on (Ω,,μ). We assume that T is continuous in the sense that if (fₙ) is a sequence in M(μ;X) and l i m n f = f in measure for some f ∈ M(μ;X), then also l i m n T f = T f in measure. Then we consider the functional equation f = (T-I)h, where f ∈ M(μ;X) is given. We obtain several conditions for the existence of h ∈ M(μ;X)...

Exact covering maps of the circle without (weak) limit measure

Roland Zweimüller (2002)

Colloquium Mathematicae

Similarity:

We construct maps T on the interval and on the circle which are Lebesgue exact preserving an absolutely continuous infinite measure μ ≪ λ, such that for any probability measure ν ≪ λ the sequence ( n - 1 k = 0 n - 1 ν T - k ) n 1 of arithmetical averages of image measures does not converge weakly.

Invariant subspaces for operators in a general II1-factor

Uffe Haagerup, Hanne Schultz (2009)

Publications Mathématiques de l'IHÉS

Similarity:

Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace 𝒦 = 𝒦 T ( B ) affiliated with ℳ, such that the Brown measure of T | 𝒦 is concentrated...

Invariant measures related with randomly connected Poisson driven differential equations

Katarzyna Horbacz (2002)

Annales Polonici Mathematici

Similarity:

We consider the stochastic differential equation (1) d u ( t ) = a ( u ( t ) , ξ ( t ) ) d t + Θ σ ( u ( t ) , θ ) p ( d t , d θ ) for t ≥ 0 with the initial condition u(0) = x₀. We give sufficient conditions for the existence of an invariant measure for the semigroup P t t 0 corresponding to (1). We show that the existence of an invariant measure for a Markov operator P corresponding to the change of measures from jump to jump implies the existence of an invariant measure for the semigroup P t t 0 describing the evolution of measures along trajectories and vice versa. ...

Sequential closures of σ -subalgebras for a vector measure

Werner J. Ricker (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a locally convex space, m : Σ X be a vector measure defined on a σ -algebra Σ , and L 1 ( m ) be the associated (locally convex) space of m -integrable functions. Let Σ ( m ) denote { χ E ; E Σ } , equipped with the relative topology from L 1 ( m ) . For a subalgebra 𝒜 Σ , let 𝒜 σ denote the generated σ -algebra and 𝒜 ¯ s denote the closure of χ ( 𝒜 ) = { χ E ; E 𝒜 } in L 1 ( m ) . Sets of the form 𝒜 ¯ s arise in criteria determining separability of L 1 ( m ) ; see [6]. We consider some natural questions concerning 𝒜 ¯ s and, in particular, its relation to χ ( 𝒜 σ ) . It is shown that...

On inhomogeneous self-similar measures and their L q spectra

Przemysław Liszka (2013)

Annales Polonici Mathematici

Similarity:

Let S i : d d for i = 1,..., N be contracting similarities, let ( p , . . . , p N , p ) be a probability vector and let ν be a probability measure on d with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on d such that μ = i = 1 N p i μ S i - 1 + p ν . We give satisfactory estimates for the lower and upper bounds of the L q spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular,...