Note on functions satisfying the integral Hölder condition
Mathematica Bohemica (1996)
- Volume: 121, Issue: 3, page 263-268
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKrál, Josef, Jr.. "Note on functions satisfying the integral Hölder condition." Mathematica Bohemica 121.3 (1996): 263-268. <http://eudml.org/doc/247974>.
@article{Král1996,
abstract = {Given a modulus of continuity $\omega $ and $q \in [1, \infty [ $ then $H_q^\omega $ denotes the space of all functions $f$ with the period $1$ on $\mathbb \{R\}$ that are locally integrable in power $q$ and whose integral modulus of continuity of power $q$ (see(1)) is majorized by a multiple of $ \omega $. The moduli of continuity $ \omega $ are characterized for which $H_q^\omega $ contains “many” functions with infinite “essential” variation on an interval of length $1$.},
author = {Král, Josef, Jr.},
journal = {Mathematica Bohemica},
keywords = {integral modulus of continuity; variation of a function; integral modulus of continuity; variation of a function},
language = {eng},
number = {3},
pages = {263-268},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Note on functions satisfying the integral Hölder condition},
url = {http://eudml.org/doc/247974},
volume = {121},
year = {1996},
}
TY - JOUR
AU - Král, Josef, Jr.
TI - Note on functions satisfying the integral Hölder condition
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 3
SP - 263
EP - 268
AB - Given a modulus of continuity $\omega $ and $q \in [1, \infty [ $ then $H_q^\omega $ denotes the space of all functions $f$ with the period $1$ on $\mathbb {R}$ that are locally integrable in power $q$ and whose integral modulus of continuity of power $q$ (see(1)) is majorized by a multiple of $ \omega $. The moduli of continuity $ \omega $ are characterized for which $H_q^\omega $ contains “many” functions with infinite “essential” variation on an interval of length $1$.
LA - eng
KW - integral modulus of continuity; variation of a function; integral modulus of continuity; variation of a function
UR - http://eudml.org/doc/247974
ER -
References
top- O. Kováčik, A necessary condition of embedding of into the space of functions with bounded variations, Izvestija vysšich učebnych zaveděnij Matematika 10 (1983), 26-28. (In Russian.) (1983)
- W. Orlicz, Application of Baire's category method to certain problems of mathematical analysis, Wiadomości Matematyczne XXIV (1982), 1-15. (In Polish.) (1982) MR0705608
- J. C. Oxtoby, Mass und Kategorie, Springeг-Verlag, 1971. (1971) Zbl0217.09202MR0393404
- A. F. Timan, Theory of Approximation of function of Real Variable, Moskva, 1960. (In Russian.) (1960)
- G. H. Hardy J. E. Littlewood, Some properties of fractional integrals I, II, Math. Z. 27 (1928), 565-606; З4 (1932), 403-439. (1928) MR1544927
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.