Displaying similar documents to “Note on functions satisfying the integral Hölder condition”

On Gelfand-Zetlin modules

Drozd, Yu. A., Ovsienko, S. A., Futorny, V. M.

Similarity:

[For the entire collection see Zbl 0742.00067.]Let 𝔤 k be the Lie algebra 𝔤 l ( k , 𝒞 ) , and let U k be the universal enveloping algebra for 𝔤 k . Let Z k be the center of U k . The authors consider the chain of Lie algebras 𝔤 n 𝔤 n - 1 𝔤 1 . Then Z = Z k k = 1 , 2 , n is an associative algebra which is called the Gel’fand-Zetlin subalgebra of U n . A 𝔤 n module V is called a G Z -module if V = x V ( x ) , where the summation is over the space of characters of Z and V ( x ) = { v V ( a - x ( a ) ) m v = 0 , m 𝒵 + , a 𝒵 } . The authors describe several properties of G Z - modules. For example, they prove that if V ( x ) = 0 ...

Łojasiewicz-Siciak condition for the pluricomplex Green function

Marta Kosek (2011)

Banach Center Publications

Similarity:

A compact set K N satisfies Łojasiewicz-Siciak condition if it is polynomially convex and there exist constants B,β > 0 such that V K ( z ) B ( d i s t ( z , K ) ) β if dist(z,K) ≤ 1. (LS) Here V K denotes the pluricomplex Green function of the set K. We cite theorems where this condition is necessary in the assumptions and list known facts about sets satisfying inequality (LS).

On the regularity of the one-sided Hardy-Littlewood maximal functions

Feng Liu, Suzhen Mao (2017)

Czechoslovak Mathematical Journal

Similarity:

In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators + and - . More precisely, we prove that + and - map W 1 , p ( ) W 1 , p ( ) with 1 < p < , boundedly and continuously. In addition, we show that the discrete versions M + and M - map BV ( ) BV ( ) boundedly and map l 1 ( ) BV ( ) continuously. Specially, we obtain the sharp variation inequalities of M + and M - , that is, Var ( M + ( f ) ) Var ( f ) and Var ( M - ( f ) ) Var ( f ) if f BV ( ) , where Var ( f ) is the total variation of f on and BV ( ) is the set of all functions f : satisfying Var ( f ) < .

Absolute continuity with respect to a subset of an interval

Lucie Loukotová (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The aim of this paper is to introduce a generalization of the classical absolute continuity to a relative case, with respect to a subset M of an interval I . This generalization is based on adding more requirements to disjoint systems { ( a k , b k ) } K from the classical definition of absolute continuity – these systems should be not too far from M and should be small relative to some covers of M . We discuss basic properties of relative absolutely continuous functions and compare this class with other...

Upper bounds for singular perturbation problems involving gradient fields

Arkady Poliakovsky (2007)

Journal of the European Mathematical Society

Similarity:

We prove an upper bound for the Aviles–Giga problem, which involves the minimization of the energy E ε ( v ) = ε Ω | 2 v | 2 d x + ε 1 Ω ( 1 | v | 2 ) 2 d x over v H 2 ( Ω ) , where ε > 0 is a small parameter. Given v W 1 , ( Ω ) such that v B V and | v | = 1 a.e., we construct a family { v ε } satisfying: v ε v in W 1 , p ( Ω ) and E ε ( v ε ) 1 3 J v | + v v | 3 d N 1 as ε goes to 0.

Resolvability in c.c.c. generic extensions

Lajos Soukup, Adrienne Stanley (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Every crowded space X is ω -resolvable in the c.c.c. generic extension V Fn ( | X | , 2 ) of the ground model. We investigate what we can say about λ -resolvability in c.c.c. generic extensions for λ > ω . A topological space is monotonically ω 1 -resolvable if there is a function f : X ω 1 such that { x X : f ( x ) α } d e n s e X for each α < ω 1 . We show that given a T 1 space X the following statements are equivalent: (1) X is ω 1 -resolvable in some c.c.c. generic extension; (2) X is monotonically ω 1 -resolvable; (3) X is ω 1 -resolvable in the Cohen-generic...

On boundary value problems for systems of nonlinear generalized ordinary differential equations

Malkhaz Ashordia (2017)

Czechoslovak Mathematical Journal

Similarity:

A general theorem (principle of a priori boundedness) on solvability of the boundary value problem d x = d A ( t ) · f ( t , x ) , h ( x ) = 0 is established, where f : [ a , b ] × n n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A : [ a , b ] n × n with bounded total variation components, and h : BV s ( [ a , b ] , n ) n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x ( t 1 ( x ) ) = ( x ) · x ( t 2 ( x ) ) + c 0 , where t i : BV s ( [ a , b ] , n ) [ a , b ] ( i = 1 , 2 ) and : BV s ( [ a , b ] , n ) n are continuous...

A tight quantitative version of Arrow’s impossibility theorem

Nathan Keller (2012)

Journal of the European Mathematical Society

Similarity:

The well-known Impossibility Theorem of Arrow asserts that any generalized social welfare function (GSWF) with at least three alternatives, which satisfies Independence of Irrelevant Alternatives (IIA) and Unanimity and is not a dictatorship, is necessarily non-transitive. In 2002, Kalai asked whether one can obtain the following quantitative version of the theorem: For any ϵ > 0 , there exists δ = δ ( ϵ ) such that if a GSWF on three alternatives satisfies the IIA condition and its probability of...

On the lower semicontinuity of certain integral functionals

Ennio De Giorgi, Giuseppe Buttazzo, Gianni Dal Maso (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Si dimostra che il funzionale Ω f ( u , D u ) 𝑑 x è semicontinuo inferiormente su W l o c 1 , 1 ( Ω ) , rispetto alla topologia indotta da L l o c 1 ( Ω ) , qualora l’integrando f ( s , p ) sia una funzione non-negativa, misurabile in s , convessa in p , limitata nell’intorno dei punti del tipo ( s , 0 ) , e tale che la funzione s f ( s , 0 ) sia semicontinua inferiormente su 𝐑 .

Integrals with respect to a Radon measure added to area type functionals: semi-continuity and relaxation

Michele Carriero, Antonio Leaci, Eduardo Pascali (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Diamo condizioni sulle funzioni f , g e sulla misura μ affinché il funzionale F ( u ) = Ω f ( x , u , D u ) 𝑑 x + Ω ¯ g ( x , u ) 𝑑 μ sia L 1 ( Ω ) -semicontinuo inferiormente su W 1 , 1 ( Ω ) C 0 ( Ω ¯ ) . Affrontiamo successivamente il problema del rilassamento.

Generalized versions of Ilmanen lemma: Insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for a normed linear space X , if f 1 : X is continuous and semiconvex with modulus ω , f 2 : X is continuous and semiconcave with modulus ω and f 1 f 2 , then there exists f C 1 , ω ( X ) such that f 1 f f 2 . Using this result we prove a generalization of Ilmanen lemma (which deals with the case ω ( t ) = t ) to the case of an arbitrary nontrivial modulus ω . This generalization (where a C l o c 1 , ω function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.

On area and side lengths of triangles in normed planes

Gennadiy Averkov, Horst Martini (2009)

Colloquium Mathematicae

Similarity:

Let d be a d-dimensional normed space with norm ||·|| and let B be the unit ball in d . Let us fix a Lebesgue measure V B in d with V B ( B ) = 1 . This measure will play the role of the volume in d . We consider an arbitrary simplex T in d with prescribed edge lengths. For the case d = 2, sharp upper and lower bounds of V B ( T ) are determined. For d ≥ 3 it is noticed that the tight lower bound of V B ( T ) is zero.

Property C for ODE and Applications to an Inverse Problem for a Heat Equation

A. G. Ramm (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let j : = - d ² / d x ² + k ² q j ( x ) , k = const > 0, j = 1,2, 0 < e s s i n f q j ( x ) e s s s u p q j ( x ) < . Suppose that (*) 0 1 p ( x ) u ( x , k ) u ( x , k ) d x = 0 for all k > 0, where p is an arbitrary fixed bounded piecewise-analytic function on [0,1], which changes sign finitely many times, and u j solves the problem j u j = 0 , 0 ≤ x ≤ 1, u j ' ( 0 , k ) = 0 , u j ( 0 , k ) = 1 . It is proved that (*) implies p = 0. This result is applied to an inverse problem for a heat equation.

A symmetry problem in the calculus of variations

Graziano Crasta (2006)

Journal of the European Mathematical Society

Similarity:

We consider the integral functional J ( u ) = Ω [ f ( | D u | ) u ] d x , u W 0 1 , 1 ( Ω ) , where Ω n , n 2 , is a nonempty bounded connected open subset of n with smooth boundary, and s f ( | s | ) is a convex, differentiable function. We prove that if J admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball.