The integer transfinite diameter of intervals and totally real algebraic integers

V. Flammang; G. Rhin; C. J. Smyth

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 1, page 137-168
  • ISSN: 1246-7405

Abstract

top
In this paper we build on some recent work of Amoroso, and Borwein and Erdélyi to derive upper and lower estimates for the integer transfinite diameter of small intervals [ r s , r s + δ ] , where r s is a fixed rational and δ 0 . We also study functions g - , g , g + associated with transfinite diameters of Farey intervals. Then we consider certain polynomials, which we call critical polynomials, associated to a given interval I . We show how to estimate from below the proportion of roots of an integer polynomial which is sufficiently small on I which must also be roots of the critical polynomial. This generalises now classical work of Aparicio, and extends the techniques of Borwein and Erdélyi from the critical polynomial x for [ 0 , 1 ] to any critical polynomial for an arbitrary interval. As an easy consequence of our results, we obtain an inequality about algebraic integers of independent interest : if α is totally real, with minimum conjugate α 1 , then, with a small number of explicit exceptions, the mean value of α and its conjugates is at least α 1 + 1 . 6 .

How to cite

top

Flammang, V., Rhin, G., and Smyth, C. J.. "The integer transfinite diameter of intervals and totally real algebraic integers." Journal de théorie des nombres de Bordeaux 9.1 (1997): 137-168. <http://eudml.org/doc/248004>.

@article{Flammang1997,
abstract = {In this paper we build on some recent work of Amoroso, and Borwein and Erdélyi to derive upper and lower estimates for the integer transfinite diameter of small intervals $[\frac\{r\}\{s\}, \frac\{r\}\{s\} + \delta ]$, where $\frac\{r\}\{s\}$ is a fixed rational and $\delta \rightarrow 0$. We also study functions $g_-, g, g^+$ associated with transfinite diameters of Farey intervals. Then we consider certain polynomials, which we call critical polynomials, associated to a given interval $I$. We show how to estimate from below the proportion of roots of an integer polynomial which is sufficiently small on $I$ which must also be roots of the critical polynomial. This generalises now classical work of Aparicio, and extends the techniques of Borwein and Erdélyi from the critical polynomial $x$ for $\mathrm \{[0,1]\}$ to any critical polynomial for an arbitrary interval. As an easy consequence of our results, we obtain an inequality about algebraic integers of independent interest : if $\alpha $ is totally real, with minimum conjugate $\alpha _1$, then, with a small number of explicit exceptions, the mean value of $\alpha $ and its conjugates is at least $\alpha _1 + 1.6$.},
author = {Flammang, V., Rhin, G., Smyth, C. J.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {polynomial; Mahler measure; inequality; integer transfinite diameter; small intervals; Farey intervals; critical polynomials; totally real algebraic integers},
language = {eng},
number = {1},
pages = {137-168},
publisher = {Université Bordeaux I},
title = {The integer transfinite diameter of intervals and totally real algebraic integers},
url = {http://eudml.org/doc/248004},
volume = {9},
year = {1997},
}

TY - JOUR
AU - Flammang, V.
AU - Rhin, G.
AU - Smyth, C. J.
TI - The integer transfinite diameter of intervals and totally real algebraic integers
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 1
SP - 137
EP - 168
AB - In this paper we build on some recent work of Amoroso, and Borwein and Erdélyi to derive upper and lower estimates for the integer transfinite diameter of small intervals $[\frac{r}{s}, \frac{r}{s} + \delta ]$, where $\frac{r}{s}$ is a fixed rational and $\delta \rightarrow 0$. We also study functions $g_-, g, g^+$ associated with transfinite diameters of Farey intervals. Then we consider certain polynomials, which we call critical polynomials, associated to a given interval $I$. We show how to estimate from below the proportion of roots of an integer polynomial which is sufficiently small on $I$ which must also be roots of the critical polynomial. This generalises now classical work of Aparicio, and extends the techniques of Borwein and Erdélyi from the critical polynomial $x$ for $\mathrm {[0,1]}$ to any critical polynomial for an arbitrary interval. As an easy consequence of our results, we obtain an inequality about algebraic integers of independent interest : if $\alpha $ is totally real, with minimum conjugate $\alpha _1$, then, with a small number of explicit exceptions, the mean value of $\alpha $ and its conjugates is at least $\alpha _1 + 1.6$.
LA - eng
KW - polynomial; Mahler measure; inequality; integer transfinite diameter; small intervals; Farey intervals; critical polynomials; totally real algebraic integers
UR - http://eudml.org/doc/248004
ER -

References

top
  1. [Am] F. Amoroso, Sur le diamètre transfini entier d'un intervalle réel, Ann. Inst. Fourier Grenoble40 (1990,), 885-911. Zbl0713.41004MR1096596
  2. [Ap1] E. Aparicio, Neuvas acotaciones para la desviación diofántica uniforme minima a cero en [0, 1] y [0,1/4], VIJornadas de Matemáticas Hispano-Lusas, Santander (1979), 289-291. MR754592
  3. [Ap2] E. Aparicio, Sobre unos sistemas de numeros enteros algebraicos de D.S. Gorshkov y sus aplicaciones al cálculo, Rev. Mat. Hisp.-Amer.41 (1981), 3-17. 
  4. [Ap3] E. Aparicio, On the asymptotic structure of the polynomials of minimal Diophantic deviation from zero, J. Approx. Th.55 (1988), 270-278. Zbl0663.41008MR968933
  5. [BoEr] P. Borwein and T. Erdélyi, The integer Chebyshev problem, Math. Comp.68 (1996), 661-681. Zbl0859.11044MR1333305
  6. [Che] E.W. Cheney, Introduction to approximation theory, McGraw-Hill, New York, 1966. Zbl0161.25202MR222517
  7. [Chu] G. Chudnovsky, Number theoretic applications of polynomials with rational coefficients defined by extremality conditions, in Arithmetic and Geometry, M.Artin and J.Tate, Editors, vol. 1, Birkhaüser, Boston, 1983, 61-105. Zbl0547.10029MR717590
  8. [DaSm] A.M. Davie and C.J. Smyth, On a limiting fractal measure defined by conjugate algebraic integers, Publications Math. d'Orsay (1987-88), 93-103. Zbl0692.12002MR993304
  9. [Fek] M. Fekete, Über die Verteilung der Wurzelen bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math Zeit.17 (1923), 228-249. MR1544613JFM49.0047.01
  10. [Fer] Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, AMS, Rhode Island, 1980. Zbl0441.41003MR560902
  11. [F11] V. Flammang, Sur la longueur des entiers algébriques totalement positifs, J. Number Th.54 (1995), 60-72. Zbl0831.11057MR1352636
  12. [F12] V. Flammang, Sur le diamètre transfini entier d'un intervalle à extrémités rationnelles, Ann. Inst. Fourier Grenoble45 (1995), 779-793. Zbl0826.41009MR1340952
  13. [F13] V. Flammang, Mesures de polynômes. Application au diamètre transfini entier, Thèse, Univ. de Metz, 1994. 
  14. [Gol] G.M. Golusin, Geometric theory of functions of a complex variable26 (1969), AMS Translations of Mathematical Monographs. Zbl0183.07502MR247039
  15. [Gor] D.S. Gorškov, On the distance from zero on the interval [0,1] of polynomials with integral coefficients (Russian), Proceedings of the Third All Union Mathematical congress (Moscow1956), vol. 4, Akad. Nauk. SSSR, 1959, 5-7. 
  16. [HaSa] L. Habsieger and B. Salvy, On integer Chebyshev polynomials (1995), preprint A2X n° 95-21, Université Bordeaux I. MR1401941
  17. [La] M. Langevin, Diamètre transfini entier d'un intervalle à extrémités rationnelles (d'après F.Amoroso), preprint. 
  18. [Mo] H.L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS84, Amer. Math. Soc., Providence, R.I., 1994. Zbl0814.11001MR1297543
  19. [Rh1] G. Rhin, Approximants de Padé et mesures effectives d'irrationalité, Séminaire de Théorie des nombres de Paris1985-86, C. Goldstein(Ed.), vol. 71, Progress in Math., Birkhäuser, 155-164. Zbl0632.10034MR1017910
  20. [Rh2] G. Rhin, Seminar, Pisa, 1989, unpublished. 
  21. [Sm1] C.J. Smyth, On the measure of totally real algebraic integers, J. Aust. Math. Soc. (Ser. A) 30 (1980), 137-149. Zbl0457.12001MR607924
  22. [Sm2] C.J. Smyth, The mean value of totally real algebraic integers, Math. Comp.42 (1984), 663-681. Zbl0536.12006MR736460
  23. [Sm3] C.J. Smyth, Totally positive algebraic integers of small trace, Ann. Inst. Fourier Grenoble34 (1984), 1-28. Zbl0534.12002MR762691
  24. [St] N. Steinmetz, Rational iteration: complex analytical dynamical systems, vol. 16, de Gruyter Studies in Mathematics, Berlin, 1993. Zbl0773.58010MR1224235

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.