A new exceptional polynomial for the integer transfinite diameter of [ 0 , 1 ]

Qiang Wu

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 3, page 847-861
  • ISSN: 1246-7405

Abstract

top
Using refinement of an algorithm given by Habsieger and Salvy to find integer polynomials with smallest sup norm on [0, 1] we extend their table of polynomials up to degree 100. For the degree 95 we find a new exceptionnal polynomial which has complex roots. Our method uses generalized Müntz-Legendre polynomials. We improve slightly the upper bound for the integer transfinite diameter of [0, 1] and give elementary proofs of lower bounds for the exponents of some critical polynomials.

How to cite

top

Wu, Qiang. "A new exceptional polynomial for the integer transfinite diameter of $[0,1]$." Journal de théorie des nombres de Bordeaux 15.3 (2003): 847-861. <http://eudml.org/doc/249099>.

@article{Wu2003,
abstract = {Using refinement of an algorithm given by Habsieger and Salvy to find integer polynomials with smallest sup norm on [0, 1] we extend their table of polynomials up to degree 100. For the degree 95 we find a new exceptionnal polynomial which has complex roots. Our method uses generalized Müntz-Legendre polynomials. We improve slightly the upper bound for the integer transfinite diameter of [0, 1] and give elementary proofs of lower bounds for the exponents of some critical polynomials.},
author = {Wu, Qiang},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {integer Chebyshev polynomials; transfinite diameter},
language = {eng},
number = {3},
pages = {847-861},
publisher = {Université Bordeaux I},
title = {A new exceptional polynomial for the integer transfinite diameter of $[0,1]$},
url = {http://eudml.org/doc/249099},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Wu, Qiang
TI - A new exceptional polynomial for the integer transfinite diameter of $[0,1]$
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 3
SP - 847
EP - 861
AB - Using refinement of an algorithm given by Habsieger and Salvy to find integer polynomials with smallest sup norm on [0, 1] we extend their table of polynomials up to degree 100. For the degree 95 we find a new exceptionnal polynomial which has complex roots. Our method uses generalized Müntz-Legendre polynomials. We improve slightly the upper bound for the integer transfinite diameter of [0, 1] and give elementary proofs of lower bounds for the exponents of some critical polynomials.
LA - eng
KW - integer Chebyshev polynomials; transfinite diameter
UR - http://eudml.org/doc/249099
ER -

References

top
  1. [1] E. Aparicio, On the asymptotic structure of the polynomials of minimal Diophantic deviation from zero. J. Approx. Th.55 (1988), 270-278. Zbl0663.41008MR968933
  2. [2] P. Borwein, T. Erdelyi, The integer Chebyshev problem. Math. Comp.65 (1996), 661-681. Zbl0859.11044MR1333305
  3. [3] P. Borwein, Some old problems on polynomials with integer coefficients. Approximation theory IX, VOL.I (Nashville, TN, 1998), 31-50, Innov. Appl. Math.Vanderbilt Univ. Press. Nashville, TN, 1998 Zbl0930.12001MR1742989
  4. [4] V. Flammang, G. Rhin, C.J. Smyth, The integer transfinite diameter of intervals and totally real algebraic integers. J. Théorie des Nombres de Bordeaux9 (1997), 137-168. Zbl0892.11033MR1469665
  5. [5] L. Habsieger, B. Salvy, On integer Chebyshev polynomials. Math. Comp.66 (1997), 763-770. Zbl0911.11033MR1401941
  6. [6] A.K. Lenstra, H.W. Lenstra, L. Lovasz, Factoring polynomials with rational coefficients. Math. Ann.261 (1982), 515-534. Zbl0488.12001MR682664
  7. [7] I.E. Pritsker, Small polynomials with integer coefficients. (submitted). Zbl1091.11009
  8. [8] Q. Wu, On the linear independence measure of logarithms of rational numbers. Math. Comp.72 (2003), 901-911. Zbl1099.11037MR1954974
  9. [9] Q. Wu, Mesure d'indépendance linéaire de logarithmes et diamètre transfini entier. Thèse, Univ. de Metz, 2000. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.