Implicit integral equations with discontinuous right-hand side

Filippo Cammaroto; Paolo Cubiotti

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 2, page 241-246
  • ISSN: 0010-2628

Abstract

top
We consider the integral equation h ( u ( t ) ) = f ( I g ( t , x ) u ( x ) d x ) , with t [ 0 , 1 ] , and prove an existence theorem for bounded solutions where f is not assumed to be continuous.

How to cite

top

Cammaroto, Filippo, and Cubiotti, Paolo. "Implicit integral equations with discontinuous right-hand side." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 241-246. <http://eudml.org/doc/248053>.

@article{Cammaroto1997,
abstract = {We consider the integral equation $h(u(t))=f\big (\int _I g(t,x)\,u(x)\,dx\big )$, with $t\in [0,1]$, and prove an existence theorem for bounded solutions where $f$ is not assumed to be continuous.},
author = {Cammaroto, Filippo, Cubiotti, Paolo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {integral equations; discontinuity; bounded solutions; bounded solutions; integral equations; discontinuous right-hand side},
language = {eng},
number = {2},
pages = {241-246},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Implicit integral equations with discontinuous right-hand side},
url = {http://eudml.org/doc/248053},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Cammaroto, Filippo
AU - Cubiotti, Paolo
TI - Implicit integral equations with discontinuous right-hand side
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 241
EP - 246
AB - We consider the integral equation $h(u(t))=f\big (\int _I g(t,x)\,u(x)\,dx\big )$, with $t\in [0,1]$, and prove an existence theorem for bounded solutions where $f$ is not assumed to be continuous.
LA - eng
KW - integral equations; discontinuity; bounded solutions; bounded solutions; integral equations; discontinuous right-hand side
UR - http://eudml.org/doc/248053
ER -

References

top
  1. Aubin J.P., Cellina A., Differential Inclusions, Springer-Verlag, Berlin, 1984. Zbl0538.34007MR0755330
  2. Aubin J.P., Frankowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990. Zbl1168.49014MR1048347
  3. Banas J., Knap Z., Integrable solutions of a functional-integral equation, Rev. Mat. Univ. Complut. Madrid 2 (1989), 31-38. (1989) Zbl0679.45003MR1012104
  4. Emmanuele G., About the existence of integrable solutions of a functional-integral equation, Rev. Mat. Univ. Complut. Madrid 4 (1991), 65-69. (1991) Zbl0746.45004MR1142550
  5. Emmanuele G., Integrable solutions of a functional-integral equation, J. Integral Equations Appl. 4 (1992), 89-94. (1992) Zbl0755.45005MR1160090
  6. Fečkan M., Nonnegative solutions of nonlinear integral equations, Comment. Math. Univ. Carolinae 36 (1995), 615-627. (1995) MR1378685
  7. Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, Berlin, 1965. Zbl0307.28001MR0367121
  8. Kantorovich L.V., Akilov G.P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964. Zbl0127.06104MR0213845
  9. Klein E., Thompson A.C., Theory of Correspondences, John Wiley and Sons, New York, 1984. Zbl0556.28012MR0752692
  10. Lang S., Real and Functional Analysis, Springer-Verlag, New York, 1993. Zbl0831.46001MR1216137
  11. Naselli Ricceri O., Ricceri B., An existence theorem for inclusions of the type Ψ ( u ) ( t ) F ( t , Φ ( u ) ( t ) ) and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. (1990) MR1116184
  12. Ricceri B., Sur la semi-continuité inférieure de certaines multifonctions, C.R. Acad. Sci. Paris, Série I 294 (1982), 265-267. (1982) Zbl0483.54010MR0653748
  13. Saint Raymond J., Riemann-measurable selections, Set-Valued Anal. 2 (1994), 481-485. (1994) Zbl0851.54021MR1304050
  14. Villani A., On Lusin's condition for the inverse function, Rend. Circ. Mat. Palermo 33 (1984), 331-335. (1984) Zbl0562.26002MR0779937

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.