Implicit integral equations with discontinuous right-hand side
Filippo Cammaroto; Paolo Cubiotti
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 2, page 241-246
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCammaroto, Filippo, and Cubiotti, Paolo. "Implicit integral equations with discontinuous right-hand side." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 241-246. <http://eudml.org/doc/248053>.
@article{Cammaroto1997,
abstract = {We consider the integral equation $h(u(t))=f\big (\int _I g(t,x)\,u(x)\,dx\big )$, with $t\in [0,1]$, and prove an existence theorem for bounded solutions where $f$ is not assumed to be continuous.},
author = {Cammaroto, Filippo, Cubiotti, Paolo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {integral equations; discontinuity; bounded solutions; bounded solutions; integral equations; discontinuous right-hand side},
language = {eng},
number = {2},
pages = {241-246},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Implicit integral equations with discontinuous right-hand side},
url = {http://eudml.org/doc/248053},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Cammaroto, Filippo
AU - Cubiotti, Paolo
TI - Implicit integral equations with discontinuous right-hand side
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 241
EP - 246
AB - We consider the integral equation $h(u(t))=f\big (\int _I g(t,x)\,u(x)\,dx\big )$, with $t\in [0,1]$, and prove an existence theorem for bounded solutions where $f$ is not assumed to be continuous.
LA - eng
KW - integral equations; discontinuity; bounded solutions; bounded solutions; integral equations; discontinuous right-hand side
UR - http://eudml.org/doc/248053
ER -
References
top- Aubin J.P., Cellina A., Differential Inclusions, Springer-Verlag, Berlin, 1984. Zbl0538.34007MR0755330
- Aubin J.P., Frankowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990. Zbl1168.49014MR1048347
- Banas J., Knap Z., Integrable solutions of a functional-integral equation, Rev. Mat. Univ. Complut. Madrid 2 (1989), 31-38. (1989) Zbl0679.45003MR1012104
- Emmanuele G., About the existence of integrable solutions of a functional-integral equation, Rev. Mat. Univ. Complut. Madrid 4 (1991), 65-69. (1991) Zbl0746.45004MR1142550
- Emmanuele G., Integrable solutions of a functional-integral equation, J. Integral Equations Appl. 4 (1992), 89-94. (1992) Zbl0755.45005MR1160090
- Fečkan M., Nonnegative solutions of nonlinear integral equations, Comment. Math. Univ. Carolinae 36 (1995), 615-627. (1995) MR1378685
- Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, Berlin, 1965. Zbl0307.28001MR0367121
- Kantorovich L.V., Akilov G.P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964. Zbl0127.06104MR0213845
- Klein E., Thompson A.C., Theory of Correspondences, John Wiley and Sons, New York, 1984. Zbl0556.28012MR0752692
- Lang S., Real and Functional Analysis, Springer-Verlag, New York, 1993. Zbl0831.46001MR1216137
- Naselli Ricceri O., Ricceri B., An existence theorem for inclusions of the type and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. (1990) MR1116184
- Ricceri B., Sur la semi-continuité inférieure de certaines multifonctions, C.R. Acad. Sci. Paris, Série I 294 (1982), 265-267. (1982) Zbl0483.54010MR0653748
- Saint Raymond J., Riemann-measurable selections, Set-Valued Anal. 2 (1994), 481-485. (1994) Zbl0851.54021MR1304050
- Villani A., On Lusin's condition for the inverse function, Rend. Circ. Mat. Palermo 33 (1984), 331-335. (1984) Zbl0562.26002MR0779937
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.