Non-autonomous vector integral equations with discontinuous right-hand side
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 2, page 319-329
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCubiotti, Paolo. "Non-autonomous vector integral equations with discontinuous right-hand side." Commentationes Mathematicae Universitatis Carolinae 42.2 (2001): 319-329. <http://eudml.org/doc/248787>.
@article{Cubiotti2001,
abstract = {We deal with the integral equation $u(t)=f(t,\int _I g(t,z)u(z)\,dz)$, with $t\in I:=[0,1]$, $f:I\times \mathbb \{R\}^n \rightarrow \mathbb \{R\}^n$ and $g:I\times I\rightarrow [0,+\infty [$. We prove an existence theorem for solutions $u\in L^s(I,\mathbb \{R\}^n)$, $s\in \,]1,+\infty ]$, where $f$ is not assumed to be continuous in the second variable. Our result extends a result recently obtained for the special case where $f$ does not depend explicitly on the first variable $t\in I$.},
author = {Cubiotti, Paolo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {vector integral equations; discontinuity; multifunctions; operator inclusions; -solutions; nonlinearities; operator inclusion},
language = {eng},
number = {2},
pages = {319-329},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-autonomous vector integral equations with discontinuous right-hand side},
url = {http://eudml.org/doc/248787},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Cubiotti, Paolo
TI - Non-autonomous vector integral equations with discontinuous right-hand side
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 2
SP - 319
EP - 329
AB - We deal with the integral equation $u(t)=f(t,\int _I g(t,z)u(z)\,dz)$, with $t\in I:=[0,1]$, $f:I\times \mathbb {R}^n \rightarrow \mathbb {R}^n$ and $g:I\times I\rightarrow [0,+\infty [$. We prove an existence theorem for solutions $u\in L^s(I,\mathbb {R}^n)$, $s\in \,]1,+\infty ]$, where $f$ is not assumed to be continuous in the second variable. Our result extends a result recently obtained for the special case where $f$ does not depend explicitly on the first variable $t\in I$.
LA - eng
KW - vector integral equations; discontinuity; multifunctions; operator inclusions; -solutions; nonlinearities; operator inclusion
UR - http://eudml.org/doc/248787
ER -
References
top- Aubin J.P., Frankowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990. Zbl1168.49014MR1048347
- Banas J., Knap Z., Integrable solutions of a functional-integral equation, Rev. Mat. Univ. Complut. Madrid 2 (1989), 31-38. (1989) Zbl0679.45003MR1012104
- Cammaroto F., Cubiotti P., Implicit integral equations with discontinuous right-hand side, Comment. Math. Univ. Carolinae 38 (1997), 241-246. (1997) Zbl0886.47031MR1455490
- Cammaroto F., Cubiotti P., Vector integral equations with discontinuous right-hand side, Comment. Math. Univ. Carolinae 40 (1999), 483-490. (1999) Zbl1065.47505MR1732487
- Emmanuele G., About the existence of integrable solutions of a functional-integral equation, Rev. Mat. Univ. Complut. Madrid 4 (1991), 65-69. (1991) Zbl0746.45004MR1142550
- Emmanuele G., Integrable solutions of a functional-integral equation, J. Integral Equations Appl. 4 (1992), 89-94. (1992) Zbl0755.45005MR1160090
- Fečkan M., Nonnegative solutions of nonlinear integral equations, Comment. Math. Univ. Carolinae 36 (1995), 615-627. (1995) MR1378685
- Hewitt E., Stomberg K., Real and Abstract Analysis, Springer-Verlag, Berlin, 1965.
- Himmelberg C.J., Van Vleck F.S., Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Padova 48 (1973), 159-169. (1973) Zbl0289.49009MR0340692
- Kantorovich L.V., Akilov G.P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964. Zbl0127.06104MR0213845
- Klein E., Thompson A.C., Theory of Correspondences, John Wiley and Sons, New York, 1984. Zbl0556.28012MR0752692
- Lang S., Real and Functional Analysis, Springer-Verlag, New York, 1993. Zbl0831.46001MR1216137
- Naselli Ricceri O., Ricceri B., An existence theorem for inclusions of the type and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. (1990) MR1116184
- Scorza Dragoni G., Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile, Rend. Sem. Mat. Univ. Padova 17 (1948), 102-106. (1948) Zbl0032.19702MR0028385
- Villani A., On Lusin's condition for the inverse function, Rend. Circ. Mat. Palermo 33 (1984), 331-335. (1984) Zbl0562.26002MR0779937
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.