Non-autonomous implicit integral equations with discontinuous right-hand side
Giovanni Anello; Paolo Cubiotti
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 3, page 417-429
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAnello, Giovanni, and Cubiotti, Paolo. "Non-autonomous implicit integral equations with discontinuous right-hand side." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 417-429. <http://eudml.org/doc/249338>.
@article{Anello2004,
abstract = {We deal with the implicit integral equation \[ h(u(t))=f(\,t\,,\int \_Ig(t,z)\,u(z)\,dz) \hbox\{ for a.a. \} t\in I, \]
where $I:=[0,1]$ and where $f:I\times [0,\lambda ]\rightarrow \{\mathbb \{R\}\}$, $g:I\times I\rightarrow [0,+\infty [$ and $h:\,]\,0,+\infty \,[\,\rightarrow \{\mathbb \{R\}\}$. We prove an existence theorem for solutions $u\in L^s(I)$ where the contituity of $f$ with respect to the second variable is not assumed.},
author = {Anello, Giovanni, Cubiotti, Paolo},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {implicit integral equations; discontinuity; lower semicontinuous multifunctions; operator inclusions; selections; implicit integral equations; discontinuity; lower semicontinuous multifunction; operator inclusion; selection; existence},
language = {eng},
number = {3},
pages = {417-429},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Non-autonomous implicit integral equations with discontinuous right-hand side},
url = {http://eudml.org/doc/249338},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Anello, Giovanni
AU - Cubiotti, Paolo
TI - Non-autonomous implicit integral equations with discontinuous right-hand side
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 417
EP - 429
AB - We deal with the implicit integral equation \[ h(u(t))=f(\,t\,,\int _Ig(t,z)\,u(z)\,dz) \hbox{ for a.a. } t\in I, \]
where $I:=[0,1]$ and where $f:I\times [0,\lambda ]\rightarrow {\mathbb {R}}$, $g:I\times I\rightarrow [0,+\infty [$ and $h:\,]\,0,+\infty \,[\,\rightarrow {\mathbb {R}}$. We prove an existence theorem for solutions $u\in L^s(I)$ where the contituity of $f$ with respect to the second variable is not assumed.
LA - eng
KW - implicit integral equations; discontinuity; lower semicontinuous multifunctions; operator inclusions; selections; implicit integral equations; discontinuity; lower semicontinuous multifunction; operator inclusion; selection; existence
UR - http://eudml.org/doc/249338
ER -
References
top- Artstein Z., Prikry K., Caratheodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547. (1987) Zbl0649.28011MR0915076
- Aubin J.P., Frankowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990. Zbl1168.49014MR1048347
- Banas J., Knap Z., Integrable solutions of a functional-integral equation, Rev. Mat. Univ. Complut. Madrid 2 (1989), 31-38. (1989) Zbl0679.45003MR1012104
- Cammaroto F., Cubiotti P., Implicit integral equations with discontinuous right-hand side, Comment. Math. Univ. Carolinae 38 (1997), 241-246. (1997) Zbl0886.47031MR1455490
- Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin, 1977. Zbl0346.46038MR0467310
- Cubiotti P., Non-autonomous vector integral equations with discontinuous right-hand side, Comment. Math. Univ. Carolinae 42 (2001), 319-329. (2001) Zbl1055.45004MR1832150
- Emmanuele G., About the existence of integrable solutions of a functional-integral equation, Rev. Mat. Univ. Complut. Madrid 4 (1991), 65-69. (1991) Zbl0746.45004MR1142550
- Emmanuele G., Integrable solutions of a functional-integral equation, J. Integral Equations Appl. 4 (1992), 89-94. (1992) Zbl0755.45005MR1160090
- Engelking R., Theory of Dimensions, Finite and Infinite, Heldermann-Verlag, 1995. Zbl0872.54002MR1363947
- Fečkan M., Nonnegative solutions of nonlinear integral equations, Comment. Math. Univ. Carolinae 36 (1995), 615-627. (1995) MR1378685
- Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, Berlin, 1965. Zbl0307.28001MR0367121
- Himmelberg C.J., Van Vleck F.S., Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Padova 48 (1973), 159-169. (1973) Zbl0289.49009MR0340692
- Kantorovich L.V., Akilov G.P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1964. Zbl0127.06104MR0213845
- Klein E., Thompson A.C., Theory of Correspondences, John Wiley and Sons, New York, 1984. Zbl0556.28012MR0752692
- Kucia A., Scorza Dragoni type theorems, Fund. Math. 138 (1991), 197-203. (1991) Zbl0744.28011MR1121606
- Lang S., Real and Functional Analysis, Springer-Verlag, New York, 1993. Zbl0831.46001MR1216137
- Naselli Ricceri O., Ricceri B., An existence theorem for inclusions of the type and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. (1990) MR1116184
- Ricceri B., Sur la semi-continuitè infèrieure de certaines multifonctions, C.R. Acad. Sci. Paris 294 (1982), 265-267. (1982) Zbl0483.54010MR0653748
- Saint Raymond J., Riemann-measurable selections, Set Valued Anal. 2 (1994), 481-485. (1994) Zbl0851.54021MR1304050
- Scorza Dragoni G., Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile, Rend. Sem. Mat. Univ. Padova 17 (1948), 102-106. (1948) Zbl0032.19702MR0028385
- Villani A., On Lusin's condition for the inverse function, Rend. Circ. Mat. Palermo 33 (1984), 331-335. (1984) Zbl0562.26002MR0779937
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.