Sets of determination for solutions of the Helmholtz equation
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 2, page 309-328
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRanošová, Jarmila. "Sets of determination for solutions of the Helmholtz equation." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 309-328. <http://eudml.org/doc/248073>.
@article{Ranošová1997,
abstract = {Let $\alpha > 0$, $\lambda = (2\alpha )^\{-1/2\}$, $S^\{n-1\}$ be the $(n-1)$-dimensional unit sphere, $\sigma $ be the surface measure on $S^\{n-1\}$ and $h(x) = \int _\{S^\{n-1\}\} e^\{\lambda \langle x,y\rangle \}\,d\sigma (y)$. We characterize all subsets $M$ of $\mathbb \{R\}^n $ such that \[ \inf \limits \_\{x\in \mathbb \{R\}^n\}\{u(x)\over h(x)\} = \inf \limits \_\{x\in M\}\{u(x)\over h(x)\} \]
for every positive solution $u$ of the Helmholtz equation on $\mathbb \{R\}^n$. A closely related problem of representing functions of $L_1(S^\{n-1\})$ as sums of blocks of the form $ e^\{\lambda \langle x_k,.\rangle \}/h(x_k)$ corresponding to points of $M$ is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References.},
author = {Ranošová, Jarmila},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Helmholtz equation; set of determination; decomposition of $L^1$; decomposition of },
language = {eng},
number = {2},
pages = {309-328},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Sets of determination for solutions of the Helmholtz equation},
url = {http://eudml.org/doc/248073},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Ranošová, Jarmila
TI - Sets of determination for solutions of the Helmholtz equation
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 309
EP - 328
AB - Let $\alpha > 0$, $\lambda = (2\alpha )^{-1/2}$, $S^{n-1}$ be the $(n-1)$-dimensional unit sphere, $\sigma $ be the surface measure on $S^{n-1}$ and $h(x) = \int _{S^{n-1}} e^{\lambda \langle x,y\rangle }\,d\sigma (y)$. We characterize all subsets $M$ of $\mathbb {R}^n $ such that \[ \inf \limits _{x\in \mathbb {R}^n}{u(x)\over h(x)} = \inf \limits _{x\in M}{u(x)\over h(x)} \]
for every positive solution $u$ of the Helmholtz equation on $\mathbb {R}^n$. A closely related problem of representing functions of $L_1(S^{n-1})$ as sums of blocks of the form $ e^{\lambda \langle x_k,.\rangle }/h(x_k)$ corresponding to points of $M$ is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References.
LA - eng
KW - Helmholtz equation; set of determination; decomposition of $L^1$; decomposition of
UR - http://eudml.org/doc/248073
ER -
References
top- Aikawa H., Sets of determination for harmonic functions in an NTA domains, J. Math. Soc. Japan, to appear. MR1376083
- Bauer H., Harmonische Räume und ihre Potentialtheorie, Springer-Verlag Berlin-Heidelberg-New York (1966). (1966) Zbl0142.38402MR0210916
- Bonsall F.F., Decomposition of functions as sums of elementary functions, Quart J. Math. Oxford (2) 37 (1986), 129-136. (1986) MR0841422
- Bonsall F.F., Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. 30 (1987), 441-477. (1987) Zbl0658.31001MR0908454
- Bonsall F.F., Some dual aspects of the Poisson kernel, Proc. Edinburgh Math. Soc. 33 (1990), 207-232. (1990) Zbl0704.31001MR1057750
- Caffarelli L.A., Littman W., Representation formulas for solutions to in , Studies in Partial Differential Equations, Ed. W. Littman, MAA Studies in Mathematics 23, MAA (1982). (1982) MR0716508
- Gardiner S.J., Sets of determination for harmonic function, Trans. Amer. Math. Soc. 338 (1993), 233-243. (1993) MR1100694
- Korányi A., A survey of harmonic functions on symmetric spaces, Proc. Symposia Pure Math. XXV, part 1 (1979), 323 -344. (1979) MR0545272
- Korányi A., Taylor J.C., Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation, Illinois J. Math. 27.1 (1983), 77-93. (1983) MR0684542
- Ranošová J., Sets of determination for parabolic functions on a half-space, Comment. Math. Univ. Carolinae 35 (1994), 497-513. (1994) MR1307276
- Ranošová J., Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness, Comment. Math. Univ. Carolinae 37 (1996), 707-723. (1996) Zbl0887.35064MR1440703
- Rudin W., Functional analysis, McGraw-Hill Book Company (1973). (1973) Zbl0253.46001MR0365062
- Taylor J.C., An elementary proof of the theorem of Fatou-Naïm-Doob, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980), CMS Conf. Proc., vol.1, Amer. Math. Soc., Providence, R.I (1981), 153-163. (1981) Zbl0551.31004MR0670103
- Watson G.N., Theory of Bessel functions, 2nd ed., Cambridge Univ. Press Cambridge (1944). (1944) Zbl0063.08184MR0010746
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.