Sets of determination for solutions of the Helmholtz equation
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 2, page 309-328
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aikawa H., Sets of determination for harmonic functions in an NTA domains, J. Math. Soc. Japan, to appear. MR1376083
- Bauer H., Harmonische Räume und ihre Potentialtheorie, Springer-Verlag Berlin-Heidelberg-New York (1966). (1966) Zbl0142.38402MR0210916
- Bonsall F.F., Decomposition of functions as sums of elementary functions, Quart J. Math. Oxford (2) 37 (1986), 129-136. (1986) MR0841422
- Bonsall F.F., Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proc. Edinburgh Math. Soc. 30 (1987), 441-477. (1987) Zbl0658.31001MR0908454
- Bonsall F.F., Some dual aspects of the Poisson kernel, Proc. Edinburgh Math. Soc. 33 (1990), 207-232. (1990) Zbl0704.31001MR1057750
- Caffarelli L.A., Littman W., Representation formulas for solutions to in , Studies in Partial Differential Equations, Ed. W. Littman, MAA Studies in Mathematics 23, MAA (1982). (1982) MR0716508
- Gardiner S.J., Sets of determination for harmonic function, Trans. Amer. Math. Soc. 338 (1993), 233-243. (1993) MR1100694
- Korányi A., A survey of harmonic functions on symmetric spaces, Proc. Symposia Pure Math. XXV, part 1 (1979), 323 -344. (1979) MR0545272
- Korányi A., Taylor J.C., Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation, Illinois J. Math. 27.1 (1983), 77-93. (1983) MR0684542
- Ranošová J., Sets of determination for parabolic functions on a half-space, Comment. Math. Univ. Carolinae 35 (1994), 497-513. (1994) MR1307276
- Ranošová J., Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness, Comment. Math. Univ. Carolinae 37 (1996), 707-723. (1996) Zbl0887.35064MR1440703
- Rudin W., Functional analysis, McGraw-Hill Book Company (1973). (1973) Zbl0253.46001MR0365062
- Taylor J.C., An elementary proof of the theorem of Fatou-Naïm-Doob, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980), CMS Conf. Proc., vol.1, Amer. Math. Soc., Providence, R.I (1981), 153-163. (1981) Zbl0551.31004MR0670103
- Watson G.N., Theory of Bessel functions, 2nd ed., Cambridge Univ. Press Cambridge (1944). (1944) Zbl0063.08184MR0010746