Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness

Jarmila Ranošová — 1996

Commentationes Mathematicae Universitatis Carolinae

Let T be a positive number or + . We characterize all subsets M of n × ] 0 , T [ such that inf X n × ] 0 , T [ u ( X ) = inf X M u ( X ) i for every positive parabolic function u on n × ] 0 , T [ in terms of coparabolic (minimal) thinness of the set M δ = ( x , t ) M B p ( ( x , t ) , δ t ) , where δ ( 0 , 1 ) and B p ( ( x , t ) , r ) is the “heat ball” with the “center” ( x , t ) and radius r . Examples of different types of sets which can be used instead of “heat balls” are given. It is proved that (i) is equivalent to the condition sup X n × + u ( X ) = sup X M u ( X ) for every bounded parabolic function on n × + and hence to all equivalent conditions given in the article [7]....

Sets of determination for solutions of the Helmholtz equation

Jarmila Ranošová — 1997

Commentationes Mathematicae Universitatis Carolinae

Let α > 0 , λ = ( 2 α ) - 1 / 2 , S n - 1 be the ( n - 1 ) -dimensional unit sphere, σ be the surface measure on S n - 1 and h ( x ) = S n - 1 e λ x , y d σ ( y ) . We characterize all subsets M of n such that inf x n u ( x ) h ( x ) = inf x M u ( x ) h ( x ) for every positive solution u of the Helmholtz equation on n . A closely related problem of representing functions of L 1 ( S n - 1 ) as sums of blocks of the form e λ x k , . / h ( x k ) corresponding to points of M is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References.

Sets of determination for parabolic functions on a half-space

Jarmila Ranošová — 1994

Commentationes Mathematicae Universitatis Carolinae

We characterize all subsets M of n × + such that sup X n × + u ( X ) = sup X M u ( X ) for every bounded parabolic function u on n × + . The closely related problem of representing functions as sums of Weierstrass kernels corresponding to points of M is also considered. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References. As a by-product the question of representability of probability continuous distributions as sums of multiples of normal distributions is investigated.

Page 1

Download Results (CSV)