On the position of the space of representable operators in the space of linear operators 1

Giovanni Emmanuele

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 2, page 255-262
  • ISSN: 0010-2628

Abstract

top
We show results about the existence and the nonexistence of a projection from the space L ( L 1 ( λ ) , X ) of all linear and bounded operators from L 1 ( λ ) into X onto the subspace R ( L 1 ( λ ) , X ) of all representable operators.

How to cite

top

Emmanuele, Giovanni. "On the position of the space of representable operators in the space of linear operators$^1$." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 255-262. <http://eudml.org/doc/248109>.

@article{Emmanuele1997,
abstract = {We show results about the existence and the nonexistence of a projection from the space $L(L^1(\lambda ),X)$ of all linear and bounded operators from $L^1(\lambda )$ into $X$ onto the subspace $R(L^1(\lambda ),X)$ of all representable operators.},
author = {Emmanuele, Giovanni},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {representable operators; vector measures; L-projections; copies of $c_0$; complemented subspace; subspace of representable operators; subspace of compact operators},
language = {eng},
number = {2},
pages = {255-262},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the position of the space of representable operators in the space of linear operators$^1$},
url = {http://eudml.org/doc/248109},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Emmanuele, Giovanni
TI - On the position of the space of representable operators in the space of linear operators$^1$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 255
EP - 262
AB - We show results about the existence and the nonexistence of a projection from the space $L(L^1(\lambda ),X)$ of all linear and bounded operators from $L^1(\lambda )$ into $X$ onto the subspace $R(L^1(\lambda ),X)$ of all representable operators.
LA - eng
KW - representable operators; vector measures; L-projections; copies of $c_0$; complemented subspace; subspace of representable operators; subspace of compact operators
UR - http://eudml.org/doc/248109
ER -

References

top
  1. Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, 1985. Zbl1098.47001MR0809372
  2. Arterburn D., Whitley R., Projections in the space of bounded linear operators, Pacific J. Math. 15 (1965), 739-746. (1965) Zbl0138.38602MR0187052
  3. Bonet J., Domański P., Lindström M., Ramanujan M.S., Operator spaces containing c 0 or l , Pacific J. Math., to appear. 
  4. Calabró A., Cilia R., Some observations about the uncomplementability of the space K ( X , Y ) into the space D P ( X , Y ) , Boll. Un. Mat. It. 7 (1993), 201-213. (1993) Zbl0854.46017MR1216716
  5. Caselles V., A characterization of weakly sequentially complete Banach lattices, Math. Z. 190 (1985), 379-385. (1985) Zbl0587.46019MR0806896
  6. Diaz S., Complemented copies of c 0 in L ( μ , E ) , Proc. Amer. Math. Soc., to appear. MR1189744
  7. Diestel J., Uhl J.J., Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977. Zbl0521.46035MR0453964
  8. Domanski P., Drewnowski L., Injectivity of spaces of operators, preprint, 1992. MR1170555
  9. Drewnowski L., Emmanuele G., The problem of the complementability between some spaces of vector measures of bounded variation with values in Banach spaces containing copies of c 0 , Studia Math. 104 (2) (1993), 111-123. (1993) MR1211812
  10. Emmanuele G., On Banach spaces containing complemented copies of c 0 , Extracta Math. 3 (1988), 98-100. (1988) 
  11. Emmanuele G., Remarks on the uncomplemented subspace W ( E , F ) , J. Funct. Anal. 99 (1991), 125-130. (1991) Zbl0769.46006MR1120917
  12. Emmanuele G., A remark on the containment of c 0 in spaces of compact operators, Math. Proc. Cambridge Phil. Soc. 111 (1992), 331-335. (1992) MR1142753
  13. Emmanuele G., On complemented copies of c 0 in spaces of operators, Comment. Math. 32 (1992), 29-32. (1992) MR1202755
  14. Emmanuele G., About the position of K w * ( E * , F ) inside L w * ( E * , F ) , Atti Seminario Matematico Fisico Modena 42 (1994), 123-134. (1994) MR1282327
  15. Emmanuele G., Answer to a question by M. Feder about K ( X , Y ) , Revista Mat. Univ. Complutense de Madrid 6 (1993), 263-266. (1993) Zbl0813.46013MR1269756
  16. Emmanuele G., Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures, Comment. Math. Univ. Carolinae 37.2 (1996), 217-228. (1996) Zbl0855.46006MR1398997
  17. Emmanuele G., John K., Uncomplementability of spaces of compact operators in larger spaces of operators, Czechoslovak J. Math., to appear. Zbl0903.46006MR1435603
  18. Fakhouri H., Représentations d’opérateurs à valeurs dans L 1 ( X , Σ , μ ) , Math. Annalen 240 (1979), 203-212. (1979) MR0526843
  19. Feder M., Subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196-205. (1980) Zbl0411.46009MR0575060
  20. Feder M., On the nonexistence of a projection onto the space of compact operators, Canad. Math. Bull. 25 (1982), 78-81. (1982) MR0657655
  21. Freniche F., Rodriguez-Piazza L., Linear projections from a space of measures onto its Bochner integrable function subspace, unpublished preprint, 1993. 
  22. Harmand P., Werner D., Werner W., M-ideals in Banach spaces and Banach algebras, LNM 1547, Springer Verlag, 1993. Zbl0789.46011MR1238713
  23. John K., On the uncomplemented subspace K ( X , Y ) , Czechoslovak Math. J. 42 (1992), 167-173. (1992) Zbl0776.46016MR1152178
  24. Johnson J., Remarks on Banach spaces of compact operators, J. Funct. Analysis 32 (1979), 304-311. (1979) Zbl0412.47024MR0538857
  25. Kalton N.J., Spaces of compact operators, Math. Annalen 208 (1974), 267-278. (1974) Zbl0266.47038MR0341154
  26. Kuo T., Projections in the spaces of bounded linear operators, Pacific J. Math. 52 (1974), 475-480. (1974) Zbl0287.47030MR0352939
  27. Meyer-Nieberg P., Banach Lattices, Springer Verlag, 1991. Zbl0743.46015MR1128093
  28. Rao T.S.S.R.K., L 1 ( μ , X ) as a complemented subspace of its bidual, preprint, 1993. 
  29. Schlumprecht T., Limited sets in Banach spaces, Ph.D. Dissertation, München, 1987. Zbl0689.46005
  30. Thorp E.O., Projection onto the subspace of compact operators, Pacific J. Math. 10 (1960), 693-696. (1960) MR0114128
  31. Tong A.E., On the existence of a noncompact bounded linear operator between certain Banach spaces, Israel J. Math. 10 (1971), 451-456. (1971) MR0296663
  32. Tong A., Wilken D.R., The uncomplemented subspace K ( E , F ) , Studia Math. 37 (1971), 227-236. (1971) Zbl0212.46302MR0300058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.