Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 2, page 217-228
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topEmmanuele, Giovanni. "Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures." Commentationes Mathematicae Universitatis Carolinae 37.2 (1996): 217-228. <http://eudml.org/doc/247943>.
@article{Emmanuele1996,
abstract = {In the paper [5] L. Drewnowski and the author proved that if $X$ is a Banach space containing a copy of $c_0$ then $L_1(\{\mu \},X)$ is not complemented in $cabv(\{\mu \},X)$ and conjectured that the same result is true if $X$ is any Banach space without the Radon-Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza ([7]) disproved this conjecture, by showing that if $\mu $ is a finite measure and $X$ is a Banach lattice not containing copies of $c_0$, then $L_1(\{\mu \},X)$ is complemented in $cabv(\{\mu \},X)$. Here, we show that the complementability of $L_1(\{\mu \},X)$ in $cabv(\{\mu \},X)$ together with that one of $X$ in the bidual $X^\{\ast \ast \}$ is equivalent to the complementability of $L_1(\{\mu \},X)$ in its bidual, so obtaining that for certain families of Banach spaces not containing $c_0$ complementability occurs (Section 2), thanks to the existence of general results stating that a space in one of those families is complemented in the bidual. We shall also prove that certain quotient spaces inherit that property (Section 3).},
author = {Emmanuele, Giovanni},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {spaces of vector measures and vector functions; complementability; Banach lattices; preduals of W$^\ast $-algebras; quotient spaces; spaces of vector measures and vector functions; preduals of -algebras; quotient spaces; Radon-Nikodym property; Banach lattice; complementability; bidual},
language = {eng},
number = {2},
pages = {217-228},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures},
url = {http://eudml.org/doc/247943},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Emmanuele, Giovanni
TI - Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 2
SP - 217
EP - 228
AB - In the paper [5] L. Drewnowski and the author proved that if $X$ is a Banach space containing a copy of $c_0$ then $L_1({\mu },X)$ is not complemented in $cabv({\mu },X)$ and conjectured that the same result is true if $X$ is any Banach space without the Radon-Nikodym property. Recently, F. Freniche and L. Rodriguez-Piazza ([7]) disproved this conjecture, by showing that if $\mu $ is a finite measure and $X$ is a Banach lattice not containing copies of $c_0$, then $L_1({\mu },X)$ is complemented in $cabv({\mu },X)$. Here, we show that the complementability of $L_1({\mu },X)$ in $cabv({\mu },X)$ together with that one of $X$ in the bidual $X^{\ast \ast }$ is equivalent to the complementability of $L_1({\mu },X)$ in its bidual, so obtaining that for certain families of Banach spaces not containing $c_0$ complementability occurs (Section 2), thanks to the existence of general results stating that a space in one of those families is complemented in the bidual. We shall also prove that certain quotient spaces inherit that property (Section 3).
LA - eng
KW - spaces of vector measures and vector functions; complementability; Banach lattices; preduals of W$^\ast $-algebras; quotient spaces; spaces of vector measures and vector functions; preduals of -algebras; quotient spaces; Radon-Nikodym property; Banach lattice; complementability; bidual
UR - http://eudml.org/doc/247943
ER -
References
top- Bourgain J., Pisier G., A construction of -spaces and related Banach spaces, Bol. Soc. Bras. Mat. 14.2 (1983), 109-123. (1983) MR0756904
- Cambern M., Greim P., The dual of a space of vector measures, Math. Z. 180 (1982), 373-378. (1982) Zbl0471.46016MR0664522
- Dinculeanu N., Vector Measures, Pergamon Press, New York, 1967. Zbl0647.60062MR0206190
- Diestel J., Uhl J.J., Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, Rhode Island, 1977. Zbl0521.46035MR0453964
- Drewnowski L., Emmanuele G., The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of , Studia Math. 104.2 (1993), 111-123. (1993) MR1211812
- Dunford N., Schwartz J.T., Linear Operators, part I, Intersciences, New York and London, 1958. Zbl0635.47001MR0117523
- Freniche F., Rodriguez-Piazza L., Linear projections from a space of measures onto its Bochner integrable functions subspace, preprint, 1993.
- Ghoussoub N., Rosenthal H.P., Martingales, -embeddings and quotients of , Math. Annalen 264 (1983), 321-332. (1983) Zbl0511.46017MR0714107
- Halmos P.R., Measure Theory, GTM 18, Springer Verlag, New York, Berlin, Heidelberg, 1974. Zbl0283.28001
- Harmand P., Werner D., Werner W., M-ideals in Banach spaces and Banach algebras, LNM 1547, Springer Verlag, New York, Berlin, Heidelberg, 1994. Zbl0789.46011MR1238713
- Johnson J., Remarks on Banach spaces of compact operators, J. Funct. Analysis 32.3 (1979), 304-311. (1979) Zbl0412.47024MR0538857
- Kwapien S., On Banach spaces containing , Studia Math. 52 (1974), 187-188. (1974) Zbl0295.60003MR0356156
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces, II, Function Spaces, EMG 97, Springer Verlag, New York, Berlin, Heidelberg, 1979. Zbl0403.46022MR0540367
- Lohman R.H., A note on Banach spaces containing , Canad. Math. Bull. 19 (1976), 365-367. (1976) MR0430748
- Musial K., Martingales of Pettis integrable functions, in Measure Theory, Oberwolfach 1979, LNM 794, Springer Verlag, New York, Berlin, Heidelberg 1980. Zbl0433.28010MR0577981
- Pelczynski A., Banach spaces of Analytic Functions and Absolutely Summing Operators, CBMS 30, Amer. Math. Soc., Providence, Rhode Island, 1977. Zbl0475.46022MR0511811
- Rao T.S.S.R.K., as a constrained subspace of its bidual, Indian Statistical Institute, Tech. Report, 1988.
- Rao T.S.S.R.K., Roy A.K., Sundaresan K., Intersection properties of balls in tensor products of some Banach spaces, Math. Scand. 65 (1989), 103-118. (1989) Zbl0675.46007MR1051827
- Rao T.S.S.R.K., A note on the property for , Canad. Math. Bull. 32 (1989), 74-77. (1989) MR0996125
- Rao T.S.S.R.K., Intersection properties of balls in tensor products of some Banach spaces - II, Indian J. Pure Appl. Math. 21 (1990), 275-284. (1990) Zbl0706.46019MR1044265
- Sakai S., C-Algebras and W-Algebras, EMG 60, Springer Verlag, 1971. Zbl1153.37316MR0442701
- Schaefer H.H., Banach lattices and positive operators, GMW 215, Springer Verlag, New York, Berlin, Heidelberg, 1974. Zbl0296.47023MR0423039
- Sundaresan K., Banach lattices of Lebesgue-Bochner function spaces and conditional expectation operators, I, Bull. Acad. Sinica 2.2 (1974), 165-184. (1974) Zbl0307.46025MR0355584
- Takesaki M., Theory of operator algebras, I, Springer Verlag, 1979. Zbl0990.46034MR0548728
- Caselles V., A characterization of weakly sequentially complete Banach lattices, Math. Z. 190 (1985), 379-385. (1985) Zbl0587.46019MR0806896
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.