On Besov spaces and absolute convergence of the Fourier transform on Heisenberg groups
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 4, page 755-763
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSkrzypczak, Leszek. "On Besov spaces and absolute convergence of the Fourier transform on Heisenberg groups." Commentationes Mathematicae Universitatis Carolinae 39.4 (1998): 755-763. <http://eudml.org/doc/248287>.
@article{Skrzypczak1998,
abstract = {In this paper the absolute convergence of the group Fourier transform for the Heisenberg group is investigated. It is proved that the Fourier transform of functions belonging to certain Besov spaces is absolutely convergent. The function spaces are defined in terms of the heat semigroup of the full Laplacian of the Heisenberg group.},
author = {Skrzypczak, Leszek},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Besov spaces; Heisenberg groups; group Fourier transform; Besov space; Heisenberg group; Fourier transform; atomic decomposition},
language = {eng},
number = {4},
pages = {755-763},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On Besov spaces and absolute convergence of the Fourier transform on Heisenberg groups},
url = {http://eudml.org/doc/248287},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Skrzypczak, Leszek
TI - On Besov spaces and absolute convergence of the Fourier transform on Heisenberg groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 4
SP - 755
EP - 763
AB - In this paper the absolute convergence of the group Fourier transform for the Heisenberg group is investigated. It is proved that the Fourier transform of functions belonging to certain Besov spaces is absolutely convergent. The function spaces are defined in terms of the heat semigroup of the full Laplacian of the Heisenberg group.
LA - eng
KW - Besov spaces; Heisenberg groups; group Fourier transform; Besov space; Heisenberg group; Fourier transform; atomic decomposition
UR - http://eudml.org/doc/248287
ER -
References
top- Bernstein S., Sur la convergence absolute des séries trigonométriques, C.R.A.S. Paris 158 (1994), 1661-1664. (1994)
- Coulhon T., Saloff-Coste L., Semi-groupes d'opérateurs et espaces fonctionels sur les groupes de Lie, J. Approx. Theory 65 (1991), 176-198. (1991) MR1104158
- Folland G., Harmonic analysis in phase space, Ann. Math. Stud. 112, Princeton Univ. Press, 1989. Zbl0682.43001MR0983366
- Gaudry G.I., Meda S., Pini R., A heat semigroup version of Bernstein's theorem on Lie groups, Monatshefte Math. 110 (1990), 101-115. (1990) Zbl0719.43008MR1076325
- Geller D., Fourier analysis on the Heisenberg group, J. Funct. Anal. 36 (1980), 205-254. (1980) Zbl0433.43008MR0569254
- Geller D., Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group, Canad. J. Math. 36 (1984), 615-684. (1984) Zbl0596.46034MR0756538
- Herz C., Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transform, J. Math. Mechanics 18 (1968), 283-324. (1968) MR0438109
- Inglis I.R., Bernstein's theorem and the Fourier algebra of the Heisenberg group, Boll. Un. Mat. Ital. 6 (1983), 39-46. (1983) Zbl0528.43008MR0694742
- Saka K., Besov spaces and Sobolev spaces on a nilpotent Lie group, Tôhoku Math. J. 31 (1979), 383-437. (1979) Zbl0429.43004MR0558675
- Skrzypczak L., Atomic decompositions on Riemannian manifolds with bounded geometry, Forum Math. 10 (1998), 19-38. (1998) MR1490136
- Skrzypczak L., Heat and harmonic extensions for function spaces of Hardy-Sobolev-Besov type on symmetric spaces and Lie groups, J. Approx. Theory, to appear. Zbl0918.43007MR1659396
- Strichartz R.S., Analysis of the Laplacian on a complete Riemannian manifold, J. Funct. Anal. 52 (1983), 48-79. (1983) Zbl0515.58037MR0705991
- Thangavelu S., On Paley-Wiener theorems for the Heisenberg group, J. Funct. Anal. 115 (1993), 24-44. (1993) Zbl0793.43006MR1228140
- Triebel H., Function spaces on Lie Groups, the Riemannian approach, J. London Math. Soc. 35 (1987), 327-338. (1987) Zbl0587.46036MR0881521
- Triebel H., Theory of Function Spaces II, Birkhäuser Verlag, 1992. Zbl0763.46025MR1163193
- Varopoulos N.Th., Saloff-Coste L., Coulhon T., Analysis and Geometry on Groups, Cambridge Univ. Press, 1992. MR1218884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.