Maximal inequalities and space-time regularity of stochastic convolutions
Mathematica Bohemica (1998)
- Volume: 123, Issue: 1, page 7-32
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPeszat, Szymon, and Seidler, Jan. "Maximal inequalities and space-time regularity of stochastic convolutions." Mathematica Bohemica 123.1 (1998): 7-32. <http://eudml.org/doc/248307>.
@article{Peszat1998,
abstract = {Space-time regularity of stochastic convolution integrals
J = 0 S(-r)Z(r)W(r)
driven by a cylindrical Wiener process $W$ in an $L^2$-space on a bounded domain is investigated. The semigroup $S$ is supposed to be given by the Green function of a $2m$-th order parabolic boundary value problem, and $Z$ is a multiplication operator. Under fairly general assumptions, $J$ is proved to be Holder continuous in time and space. The method yields maximal inequalities for stochastic convolutions in the space of continuous functions as well.},
author = {Peszat, Szymon, Seidler, Jan},
journal = {Mathematica Bohemica},
keywords = {stochastic convolutions; maximal inequalities; regularity of stochastic partial differential equations; stochastic convolutions; maximal inequalities; regularity of stochastic partial differential equations},
language = {eng},
number = {1},
pages = {7-32},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal inequalities and space-time regularity of stochastic convolutions},
url = {http://eudml.org/doc/248307},
volume = {123},
year = {1998},
}
TY - JOUR
AU - Peszat, Szymon
AU - Seidler, Jan
TI - Maximal inequalities and space-time regularity of stochastic convolutions
JO - Mathematica Bohemica
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 123
IS - 1
SP - 7
EP - 32
AB - Space-time regularity of stochastic convolution integrals
J = 0 S(-r)Z(r)W(r)
driven by a cylindrical Wiener process $W$ in an $L^2$-space on a bounded domain is investigated. The semigroup $S$ is supposed to be given by the Green function of a $2m$-th order parabolic boundary value problem, and $Z$ is a multiplication operator. Under fairly general assumptions, $J$ is proved to be Holder continuous in time and space. The method yields maximal inequalities for stochastic convolutions in the space of continuous functions as well.
LA - eng
KW - stochastic convolutions; maximal inequalities; regularity of stochastic partial differential equations; stochastic convolutions; maximal inequalities; regularity of stochastic partial differential equations
UR - http://eudml.org/doc/248307
ER -
References
top- P.-L. Chow J.-L. Jiang, 10.1007/BF01199588, Probab. Theory Related Fields 99 (1994), 1-27. (1994) MR1273740DOI10.1007/BF01199588
- G. Da Prato S. Kwapień J. Zabczyk, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), 1-23. (1987) MR0920798
- G. Da Prato J. Zabczyk, A note on semilinear stochastic equations, Differential Integral Equations 1 (1988), 143-155. (1988) MR0922558
- G. Da Prato J. Zabczyk, 10.1080/07362999208809260, Stochastic Anal. Appl. 10 (1992), 143-153. (1992) MR1154532DOI10.1080/07362999208809260
- G. Da Prato J. Zabczyk, 10.1016/0022-0396(92)90111-Y, J. Differential Equations 98 (1992), 181-195. (1992) MR1168978DOI10.1016/0022-0396(92)90111-Y
- G. Da Prato J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. (1992) MR1207136
- D. A. Dawson, 10.1016/0025-5564(72)90039-9, Math. Biosci. 15 (1972), 287-316. (1972) Zbl0251.60040MR0321178DOI10.1016/0025-5564(72)90039-9
- S. D. Eideľman S. D. Ivasishen, Investigation of the Green matrix of a homogeneous parabolic boundary value problem, Trudy Moskov. Mat. Obshch. 23 (1970), 179-234. (In Russian.) (1970) MR0367455
- T. Funaki, 10.1017/S0027763000020298, Nagoya Math. J. 89 (1983), 129-193. (1983) Zbl0531.60095MR0692348DOI10.1017/S0027763000020298
- T. Funaki, Regularity properties for stochastic partial diffeгential equations of parabolic type, Osaka J. Math. 28 (1991), 495-516. (1991) MR1144470
- B. Gołdys, On weak solutions of stochastic evolution equations with unbounded coefficients, Miniconference on probability and analysis (Sydney, 1991). Proc. Centre Math. Appl. Austral. Nat. Univ. 29, Austral Nat. Univ., Canberra, 1992, pp. 116-128. (1991) MR1188889
- I. A. Ibragimov, Sample paths properties of stochastic processes and embedding theorems, Teor. Veroyatnost. i Primenen. 18 (1973), 468-480. (In Russian.) (1973) MR0326827
- P. Kotelenez, 10.1080/17442508708833463, Stochastics 21 (1987), 345-358. (1987) Zbl0622.60065MR0905052DOI10.1080/17442508708833463
- P. Kotelenez, 10.1080/17442509208833801, Stochastics Stochastics Rep. 41 (1992), 177-199. (1992) Zbl0766.60078MR1275582DOI10.1080/17442509208833801
- A. Kufner O. John S. Fučík, Function Spaces, Academia, Praha, 1977. (1977) MR0482102
- R. Manthey, 10.1002/mana.19861250108, Math. Nachr. 125 (1986), 121-133. (1986) MR0847354DOI10.1002/mana.19861250108
- M. Metivier J. Pellaumail, Stochastic Integration, Academic Press, New York, 1980. (1980) MR0578177
- S. Peszat, 10.1080/17442509508834024, Stochastics Stochastics Rep. 55 (1995), 167-193. (1995) Zbl0886.60064MR1378855DOI10.1080/17442509508834024
- M. Reed B. Simon, Methods of Modern Mathematical Physics I, Academic Press, New York, 1972. (1972) MR0751959
- B. Schmuland, 10.4153/CJM-1993-075-6, Canad. J. Math. 45 (1993), 1324-1338. (1993) MR1247550DOI10.4153/CJM-1993-075-6
- J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I, Math. Bohem. 118 (1993), 67-106. (1993) Zbl0785.35115MR1213834
- V. A. Solonnikov, On boundary value problems foг lineaг paгabolic systems of differential equations of geneгal foгm, Trudy Mat. Inst. Steklov 83 (1965), 3-162. (In Russian.) (1965) MR0211083
- V. A. Solonnikov, On the Green matrices for parabolic boundary value problems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 14 (1969), 256-287. (In Russian.) (1969) MR0296527
- H. Tanabe, Equations of Evolution, Pitman, London, 1979. (1979) Zbl0417.35003MR0533824
- H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Deutscheг Verlag der Wissenschaften, Berlin, 1978. (1978) Zbl0387.46033MR0500580
- J. B. Walsh, An intгoduction to stochastic partial diffeгential equations, École d'été de pгobabilités de Saint-Flour XIV-1984. Lectuгe Notes in Math. 1180, Spгingeг-Verlag, Berlin, 1986, pp. 265-439. (1984) MR0876085
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.