Uniform exponential ergodicity of stochastic dissipative systems

Beniamin Goldys; Bohdan Maslowski

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 4, page 745-762
  • ISSN: 0011-4642

Abstract

top
We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in d with d 3 .

How to cite

top

Goldys, Beniamin, and Maslowski, Bohdan. "Uniform exponential ergodicity of stochastic dissipative systems." Czechoslovak Mathematical Journal 51.4 (2001): 745-762. <http://eudml.org/doc/30669>.

@article{Goldys2001,
abstract = {We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb \{R\}^d$ with $d\le 3$.},
author = {Goldys, Beniamin, Maslowski, Bohdan},
journal = {Czechoslovak Mathematical Journal},
keywords = {dissipative system; compact semigroup; exponential ergodicity; spectral gap; dissipative system; compact semigroup; exponential ergodicity; spectral gap},
language = {eng},
number = {4},
pages = {745-762},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniform exponential ergodicity of stochastic dissipative systems},
url = {http://eudml.org/doc/30669},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Goldys, Beniamin
AU - Maslowski, Bohdan
TI - Uniform exponential ergodicity of stochastic dissipative systems
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 4
SP - 745
EP - 762
AB - We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb {R}^d$ with $d\le 3$.
LA - eng
KW - dissipative system; compact semigroup; exponential ergodicity; spectral gap; dissipative system; compact semigroup; exponential ergodicity; spectral gap
UR - http://eudml.org/doc/30669
ER -

References

top
  1. Uniform positivity improving property, Sobolev inequalities and spectral gaps, J. Funct. Anal. 158 (1998), 152–185. (1998) Zbl0914.47041MR1641566
  2. 10.1215/kjm/1250524714, J.  Math. Kyoto Univ. 4 (1964), 207–243. (1964) Zbl0143.13902MR0197997DOI10.1215/kjm/1250524714
  3. Equivalence of exponential ergodicity and L 2 -exponential convergence for Markov chains, Stochastic Process. Appl. 87 (2000), 281–297. (2000) MR1757116
  4. 10.1007/BF01192465, Probab. Theory Related Fields 102 (1995), 331–356. (1995) MR1339737DOI10.1007/BF01192465
  5. 10.1215/kjm/1250518505, J.  Math. Kyoto Univ. 36 (1996), 481–498. (1996) MR1417822DOI10.1215/kjm/1250518505
  6. Large asymptotic behaviour of Kolmogorov equations in Hilbert spaces, Partial Differential Equations (Praha, 1998), Chapman & Hall/CRC, Boca Raton, 2000, pp. 111–120. (2000) Zbl0946.47027MR1713879
  7. Poincaré inequality for some measures in Hilbert spaces and application to spectral gap for transition semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 419–431. (1997) Zbl1039.60053MR1655525
  8. Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. (1992) MR1207136
  9. Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. (1996) MR1417491
  10. Invariant measures of non symmetric dissipative stochastic systems, (to appear). (to appear) 
  11. 10.1080/07362999208809278, Stochastic Anal. Appl. 10 (1992), 387–408. (1992) MR1178482DOI10.1080/07362999208809278
  12. On invariant measures for diffusions on Banach spaces, Potential Anal. 7 (1997), 539–553. (1997) MR1467205
  13. 10.1006/jmaa.1999.6387, J. Math. Anal. Appl. 234 (1999), 592–631. (1999) MR1689410DOI10.1006/jmaa.1999.6387
  14. Contributions to Doeblin’s theory of Markov processes, Z. Wahrscheinlichkeitstheorie und Verw. Geb. 8 (1967), 19–40. (1967) MR0221591
  15. Ergodicité d’une classe d’équations aux dérivées partielles stochastiques, C. R.  Acad. Sci. Paris Sér. I Math. 320 (1995), 231–236. (1995) MR1320362
  16. Chaos, Fractals and Noise, Springer-Verlag, New York, 1994. (1994) MR1244104
  17. Strong Feller property for semilinear stochastic evolution equations and applications, Stochastic Systems and Optimization (Warsaw, 1988). Lecture Notes in Control Inform. Sci. Vol. 136, Springer, Berlin, 1989, pp. 210–224. (1989) Zbl0686.60053MR1180781
  18. On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise, Stochastic Processes and Related Topics (Georgenthal, 1990), Akademie-Verlag, Berlin, 1991, pp. 93–102. (1991) Zbl0719.60059MR1127885
  19. 10.1080/17442509308833854, Stochastics Stochastics Rep. 45 (1993), 17–44. (1993) Zbl0792.60058MR1277360DOI10.1080/17442509308833854
  20. 10.1007/s440-000-8014-0, Probab. Theory Related Fields 118 (2000), 187–210. (2000) MR1790081DOI10.1007/s440-000-8014-0
  21. Invariant measures for nonlinear SPDE’s: Uniqueness and stability, Arch. Math. (Brno) 34 (1998), 153–172. (1998) MR1629692
  22. Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993. (1993) MR1287609
  23. Maximal inequalities and space-time regularity of stochastic convolutions, Math. Bohem. 123 (1998), 7–32. (1998) MR1618707
  24. 10.1214/ECP.v2-981, Electron. Comm. Probab. 2 (1997), 13–25. (1997) MR1448322DOI10.1214/ECP.v2-981
  25. Probabilistic representations and hyperbound estimates for semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), 337–358. (1999) MR1810996
  26. 10.1023/A:1022821729545, Czechoslovak Math. J. 47 (122) (1997), 277–316. (1997) Zbl0935.60041MR1452421DOI10.1023/A:1022821729545
  27. 10.1080/07362999908809639, Stochastic Anal.Appl. 17 (1999), 857–869. (1999) Zbl0933.60074MR1714903DOI10.1080/07362999908809639
  28. Accretive differential operators, Boll. Un. Mat. Ital  B. (5) 13 (1976), 19–31. (1976) Zbl0343.35016MR0425682
  29. Functional inequalities, semigroup properties and spectrum estimate, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), 263–295. (2000) MR1812701
  30. Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal. 172 (2000), 301–376. (2000) Zbl0957.60032MR1753178

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.