Uniform exponential ergodicity of stochastic dissipative systems
Beniamin Goldys; Bohdan Maslowski
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 4, page 745-762
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGoldys, Beniamin, and Maslowski, Bohdan. "Uniform exponential ergodicity of stochastic dissipative systems." Czechoslovak Mathematical Journal 51.4 (2001): 745-762. <http://eudml.org/doc/30669>.
@article{Goldys2001,
abstract = {We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb \{R\}^d$ with $d\le 3$.},
author = {Goldys, Beniamin, Maslowski, Bohdan},
journal = {Czechoslovak Mathematical Journal},
keywords = {dissipative system; compact semigroup; exponential ergodicity; spectral gap; dissipative system; compact semigroup; exponential ergodicity; spectral gap},
language = {eng},
number = {4},
pages = {745-762},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniform exponential ergodicity of stochastic dissipative systems},
url = {http://eudml.org/doc/30669},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Goldys, Beniamin
AU - Maslowski, Bohdan
TI - Uniform exponential ergodicity of stochastic dissipative systems
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 4
SP - 745
EP - 762
AB - We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb {R}^d$ with $d\le 3$.
LA - eng
KW - dissipative system; compact semigroup; exponential ergodicity; spectral gap; dissipative system; compact semigroup; exponential ergodicity; spectral gap
UR - http://eudml.org/doc/30669
ER -
References
top- Uniform positivity improving property, Sobolev inequalities and spectral gaps, J. Funct. Anal. 158 (1998), 152–185. (1998) Zbl0914.47041MR1641566
- 10.1215/kjm/1250524714, J. Math. Kyoto Univ. 4 (1964), 207–243. (1964) Zbl0143.13902MR0197997DOI10.1215/kjm/1250524714
- Equivalence of exponential ergodicity and -exponential convergence for Markov chains, Stochastic Process. Appl. 87 (2000), 281–297. (2000) MR1757116
- 10.1007/BF01192465, Probab. Theory Related Fields 102 (1995), 331–356. (1995) MR1339737DOI10.1007/BF01192465
- 10.1215/kjm/1250518505, J. Math. Kyoto Univ. 36 (1996), 481–498. (1996) MR1417822DOI10.1215/kjm/1250518505
- Large asymptotic behaviour of Kolmogorov equations in Hilbert spaces, Partial Differential Equations (Praha, 1998), Chapman & Hall/CRC, Boca Raton, 2000, pp. 111–120. (2000) Zbl0946.47027MR1713879
- Poincaré inequality for some measures in Hilbert spaces and application to spectral gap for transition semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 419–431. (1997) Zbl1039.60053MR1655525
- Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. (1992) MR1207136
- Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. (1996) MR1417491
- Invariant measures of non symmetric dissipative stochastic systems, (to appear). (to appear)
- 10.1080/07362999208809278, Stochastic Anal. Appl. 10 (1992), 387–408. (1992) MR1178482DOI10.1080/07362999208809278
- On invariant measures for diffusions on Banach spaces, Potential Anal. 7 (1997), 539–553. (1997) MR1467205
- 10.1006/jmaa.1999.6387, J. Math. Anal. Appl. 234 (1999), 592–631. (1999) MR1689410DOI10.1006/jmaa.1999.6387
- Contributions to Doeblin’s theory of Markov processes, Z. Wahrscheinlichkeitstheorie und Verw. Geb. 8 (1967), 19–40. (1967) MR0221591
- Ergodicité d’une classe d’équations aux dérivées partielles stochastiques, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 231–236. (1995) MR1320362
- Chaos, Fractals and Noise, Springer-Verlag, New York, 1994. (1994) MR1244104
- Strong Feller property for semilinear stochastic evolution equations and applications, Stochastic Systems and Optimization (Warsaw, 1988). Lecture Notes in Control Inform. Sci. Vol. 136, Springer, Berlin, 1989, pp. 210–224. (1989) Zbl0686.60053MR1180781
- On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise, Stochastic Processes and Related Topics (Georgenthal, 1990), Akademie-Verlag, Berlin, 1991, pp. 93–102. (1991) Zbl0719.60059MR1127885
- 10.1080/17442509308833854, Stochastics Stochastics Rep. 45 (1993), 17–44. (1993) Zbl0792.60058MR1277360DOI10.1080/17442509308833854
- 10.1007/s440-000-8014-0, Probab. Theory Related Fields 118 (2000), 187–210. (2000) MR1790081DOI10.1007/s440-000-8014-0
- Invariant measures for nonlinear SPDE’s: Uniqueness and stability, Arch. Math. (Brno) 34 (1998), 153–172. (1998) MR1629692
- Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993. (1993) MR1287609
- Maximal inequalities and space-time regularity of stochastic convolutions, Math. Bohem. 123 (1998), 7–32. (1998) MR1618707
- 10.1214/ECP.v2-981, Electron. Comm. Probab. 2 (1997), 13–25. (1997) MR1448322DOI10.1214/ECP.v2-981
- Probabilistic representations and hyperbound estimates for semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), 337–358. (1999) MR1810996
- 10.1023/A:1022821729545, Czechoslovak Math. J. 47 (122) (1997), 277–316. (1997) Zbl0935.60041MR1452421DOI10.1023/A:1022821729545
- 10.1080/07362999908809639, Stochastic Anal.Appl. 17 (1999), 857–869. (1999) Zbl0933.60074MR1714903DOI10.1080/07362999908809639
- Accretive differential operators, Boll. Un. Mat. Ital B. (5) 13 (1976), 19–31. (1976) Zbl0343.35016MR0425682
- Functional inequalities, semigroup properties and spectrum estimate, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), 263–295. (2000) MR1812701
- Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal. 172 (2000), 301–376. (2000) Zbl0957.60032MR1753178
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.