Topologically maximal convergences, accessibility, and covering maps
Mathematica Bohemica (1998)
- Volume: 123, Issue: 4, page 371-384
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDolecki, Szymon, and Pillot, Michel. "Topologically maximal convergences, accessibility, and covering maps." Mathematica Bohemica 123.4 (1998): 371-384. <http://eudml.org/doc/248310>.
@article{Dolecki1998,
abstract = {Topologically maximal pretopologies, paratopologies and pseudotopologies are characterized in terms of various accessibility properties. Thanks to recent convergence-theoretic descriptions of miscellaneous quotient maps (in terms of topological, pretopological, paratopological and pseudotopological projections), the quotient characterizations of accessibility (in particular, those of G. T. Whyburn and F. Siwiec) are shown to be instances of a single general theorem. Convergence-theoretic characterizations of sequence-covering and compact-covering maps are used to refine various results on the relationship between covering and quotient maps (by A. V. Arhangeľskii, E. Michael, F. Siwies and V. J. Mancuso) by deducing them from a single theorem.},
author = {Dolecki, Szymon, Pillot, Michel},
journal = {Mathematica Bohemica},
keywords = {sequence-covering; compact-covering; strong accessibility; pseudotopology; paratopology; pretopology; accessibility; sequence-covering; compact-covering; strong accessibility; pseudotopology; paratopology; pretopology},
language = {eng},
number = {4},
pages = {371-384},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Topologically maximal convergences, accessibility, and covering maps},
url = {http://eudml.org/doc/248310},
volume = {123},
year = {1998},
}
TY - JOUR
AU - Dolecki, Szymon
AU - Pillot, Michel
TI - Topologically maximal convergences, accessibility, and covering maps
JO - Mathematica Bohemica
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 123
IS - 4
SP - 371
EP - 384
AB - Topologically maximal pretopologies, paratopologies and pseudotopologies are characterized in terms of various accessibility properties. Thanks to recent convergence-theoretic descriptions of miscellaneous quotient maps (in terms of topological, pretopological, paratopological and pseudotopological projections), the quotient characterizations of accessibility (in particular, those of G. T. Whyburn and F. Siwiec) are shown to be instances of a single general theorem. Convergence-theoretic characterizations of sequence-covering and compact-covering maps are used to refine various results on the relationship between covering and quotient maps (by A. V. Arhangeľskii, E. Michael, F. Siwies and V. J. Mancuso) by deducing them from a single theorem.
LA - eng
KW - sequence-covering; compact-covering; strong accessibility; pseudotopology; paratopology; pretopology; accessibility; sequence-covering; compact-covering; strong accessibility; pseudotopology; paratopology; pretopology
UR - http://eudml.org/doc/248310
ER -
References
top- A. V. Arhangeľskii, Some types of factor mappings and the relations between classes of topological spaces, Dokl. Akad. Nauk SSSR 153 (1963), 743-763. (1963) MR0158362
- A. V. Arhangeľskii, On quotient mappings defined on metric spaces, Soviet Math. Dokl. 5 (1964), 368-371. (1964)
- G. Choquet, Convergences, Ann. Univ. Grenoble 23 (1947-48), 55-112. (1947) MR0025716
- S. Dolecki, 10.1016/0166-8641(96)00067-3, Topology Appl. 73 (1996). 1-21. (1996) MR1413721DOI10.1016/0166-8641(96)00067-3
- S. Dolecki G. H. Greco, 10.4064/sm-77-3-265-281, Studia Math. 77 (1984), 265-281. (1984) MR0745283DOI10.4064/sm-77-3-265-281
- S. Dolecki G. H. Greco, 10.1002/mana.19861270123, Math. Nachr. 127 (1986), 317-334. (1986) MR0861735DOI10.1002/mana.19861270123
- R. Engelking, Topology, PWN, 1977. (1977) Zbl0373.54002
- S. Franklin, 10.4064/fm-57-1-107-115, Fund. Math. 57 (1965), 107-115. (1965) Zbl0132.17802MR0180954DOI10.4064/fm-57-1-107-115
- S. Franklin, 10.4064/fm-61-1-51-56, Fund. Math. 61 (1967), 51-56. (1967) Zbl0168.43502MR0222832DOI10.4064/fm-61-1-51-56
- W. Gähler, Grundstrukturen der Analysis, Akademie-Verlag, 1977. (1977) MR0459969
- O. Hájek, Notes on quotient maps, Comment. Math. Univ. Carolin. 7(1966), 319-323. (1966) MR0202118
- V. Kannan, 10.1090/memo/0245, Memoirs Amer. Math. Soc. 32 (1981), no. 245, 1-164. (1981) Zbl0473.54001MR0617500DOI10.1090/memo/0245
- D. C. Kent, 10.4064/fm-65-2-197-205, Fund. Math. 65 (1969), 197-205. (1969) Zbl0179.51002MR0250258DOI10.4064/fm-65-2-197-205
- E. Michael, 10.5802/aif.301, Ann. Inst. Fourier (Grenoble) 18 (1968), 287-302. (1968) Zbl0175.19704MR0244964DOI10.5802/aif.301
- E. Michael, -spaces, J. Math. Mech. 15 (1966), 983-1002. (1966) MR0206907
- E. Michael, 10.1016/0016-660X(72)90040-2, Gen. Topology Appl. 2 (1972), 91-138. (1972) Zbl0238.54009MR0309045DOI10.1016/0016-660X(72)90040-2
- F. Siwiec, 10.1016/0016-660X(71)90120-6, Gen. Topology Appl. 1 (1971), 143-154. (1971) Zbl0218.54016MR0288737DOI10.1016/0016-660X(71)90120-6
- F. Siwiec V. J. Mancuso, Relations among certain mappings and conditions for their equivalence, Gen. Topology Appl. 1 (1971), 34-41. (1971) MR0282347
- G. T. Whyburn, 10.1215/S0012-7094-56-02321-3, Duke Math. J. 23 (1956), 237-240. (1956) Zbl0071.38201MR0098361DOI10.1215/S0012-7094-56-02321-3
- G. T Whyburn, 10.1090/S0002-9939-1970-0248722-0, Proc. Amer. Math. Soc. 24 (1970), 181-185. (1970) Zbl0197.48602MR0248722DOI10.1090/S0002-9939-1970-0248722-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.