# Topologically maximal convergences, accessibility, and covering maps

Mathematica Bohemica (1998)

- Volume: 123, Issue: 4, page 371-384
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topDolecki, Szymon, and Pillot, Michel. "Topologically maximal convergences, accessibility, and covering maps." Mathematica Bohemica 123.4 (1998): 371-384. <http://eudml.org/doc/248310>.

@article{Dolecki1998,

abstract = {Topologically maximal pretopologies, paratopologies and pseudotopologies are characterized in terms of various accessibility properties. Thanks to recent convergence-theoretic descriptions of miscellaneous quotient maps (in terms of topological, pretopological, paratopological and pseudotopological projections), the quotient characterizations of accessibility (in particular, those of G. T. Whyburn and F. Siwiec) are shown to be instances of a single general theorem. Convergence-theoretic characterizations of sequence-covering and compact-covering maps are used to refine various results on the relationship between covering and quotient maps (by A. V. Arhangeľskii, E. Michael, F. Siwies and V. J. Mancuso) by deducing them from a single theorem.},

author = {Dolecki, Szymon, Pillot, Michel},

journal = {Mathematica Bohemica},

keywords = {sequence-covering; compact-covering; strong accessibility; pseudotopology; paratopology; pretopology; accessibility; sequence-covering; compact-covering; strong accessibility; pseudotopology; paratopology; pretopology},

language = {eng},

number = {4},

pages = {371-384},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Topologically maximal convergences, accessibility, and covering maps},

url = {http://eudml.org/doc/248310},

volume = {123},

year = {1998},

}

TY - JOUR

AU - Dolecki, Szymon

AU - Pillot, Michel

TI - Topologically maximal convergences, accessibility, and covering maps

JO - Mathematica Bohemica

PY - 1998

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 123

IS - 4

SP - 371

EP - 384

AB - Topologically maximal pretopologies, paratopologies and pseudotopologies are characterized in terms of various accessibility properties. Thanks to recent convergence-theoretic descriptions of miscellaneous quotient maps (in terms of topological, pretopological, paratopological and pseudotopological projections), the quotient characterizations of accessibility (in particular, those of G. T. Whyburn and F. Siwiec) are shown to be instances of a single general theorem. Convergence-theoretic characterizations of sequence-covering and compact-covering maps are used to refine various results on the relationship between covering and quotient maps (by A. V. Arhangeľskii, E. Michael, F. Siwies and V. J. Mancuso) by deducing them from a single theorem.

LA - eng

KW - sequence-covering; compact-covering; strong accessibility; pseudotopology; paratopology; pretopology; accessibility; sequence-covering; compact-covering; strong accessibility; pseudotopology; paratopology; pretopology

UR - http://eudml.org/doc/248310

ER -

## References

top- A. V. Arhangeľskii, Some types of factor mappings and the relations between classes of topological spaces, Dokl. Akad. Nauk SSSR 153 (1963), 743-763. (1963) MR0158362
- A. V. Arhangeľskii, On quotient mappings defined on metric spaces, Soviet Math. Dokl. 5 (1964), 368-371. (1964)
- G. Choquet, Convergences, Ann. Univ. Grenoble 23 (1947-48), 55-112. (1947) MR0025716
- S. Dolecki, 10.1016/0166-8641(96)00067-3, Topology Appl. 73 (1996). 1-21. (1996) MR1413721DOI10.1016/0166-8641(96)00067-3
- S. Dolecki G. H. Greco, Topologically maximal pretopologies, Studia Math. 77 (1984), 265-281. (1984) MR0745283
- S. Dolecki G. H. Greco, 10.1002/mana.19861270123, Math. Nachr. 127 (1986), 317-334. (1986) MR0861735DOI10.1002/mana.19861270123
- R. Engelking, Topology, PWN, 1977. (1977) Zbl0373.54002
- S. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115. (1965) Zbl0132.17802MR0180954
- S. Franklin, Spaces in which sequences suffice, II, Fund. Math. 61 (1967), 51-56. (1967) Zbl0168.43502MR0222832
- W. Gähler, Grundstrukturen der Analysis, Akademie-Verlag, 1977. (1977) MR0459969
- O. Hájek, Notes on quotient maps, Comment. Math. Univ. Carolin. 7(1966), 319-323. (1966) MR0202118
- V. Kannan, 10.1090/memo/0245, Memoirs Amer. Math. Soc. 32 (1981), no. 245, 1-164. (1981) Zbl0473.54001MR0617500DOI10.1090/memo/0245
- D. C. Kent, Convergence quotient maps, Fund. Math. 65 (1969), 197-205. (1969) Zbl0179.51002MR0250258
- E. Michael, 10.5802/aif.301, Ann. Inst. Fourier (Grenoble) 18 (1968), 287-302. (1968) Zbl0175.19704MR0244964DOI10.5802/aif.301
- E. Michael, ${N}_{0}$-spaces, J. Math. Mech. 15 (1966), 983-1002. (1966) MR0206907
- E. Michael, 10.1016/0016-660X(72)90040-2, Gen. Topology Appl. 2 (1972), 91-138. (1972) Zbl0238.54009MR0309045DOI10.1016/0016-660X(72)90040-2
- F. Siwiec, 10.1016/0016-660X(71)90120-6, Gen. Topology Appl. 1 (1971), 143-154. (1971) Zbl0218.54016MR0288737DOI10.1016/0016-660X(71)90120-6
- F. Siwiec V. J. Mancuso, Relations among certain mappings and conditions for their equivalence, Gen. Topology Appl. 1 (1971), 34-41. (1971) MR0282347
- G. T. Whyburn, 10.1215/S0012-7094-56-02321-3, Duke Math. J. 23 (1956), 237-240. (1956) Zbl0071.38201MR0098361DOI10.1215/S0012-7094-56-02321-3
- G. T Whyburn, 10.1090/S0002-9939-1970-0248722-0, Proc. Amer. Math. Soc. 24 (1970), 181-185. (1970) Zbl0197.48602MR0248722DOI10.1090/S0002-9939-1970-0248722-0

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.