-spaces and images of separable metric spaces.
Let X be a connected locally compact metric space. It is known that if X is locally connected, then the space of ends (Freudenthal ends), EX, can be represented as the inverse limit of the set (space) S(X C) of components of X C, i.e., as the inverse limit of the inverse system . In this paper, the above result is significantly improved. It is shown that for a space which is not locally connected, we can replace the space of components by the space of quasicomponents Q(X C) of X C. The following...
The concepts of -systems, -networks and -covers were defined by A. Arhangel’skiǐ in 1964, P. O’Meara in 1971 and R. McCoy, I. Ntantu in 1985, respectively. In this paper the relationships among -systems, -networks and -covers are further discussed and are established by -systems. As applications, some new characterizations of quotients or closed images of locally compact metric spaces are given by means of -systems.