One special class of modular forms and group representations
Journal de théorie des nombres de Bordeaux (1999)
- Volume: 11, Issue: 1, page 247-262
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topVoskresenskaya, Galina V.. "One special class of modular forms and group representations." Journal de théorie des nombres de Bordeaux 11.1 (1999): 247-262. <http://eudml.org/doc/248341>.
@article{Voskresenskaya1999,
abstract = {In this article we consider one special class of modular forms which are products of Dedekind $\eta $-functions and the relationships between these functions and representations of finite groups.},
author = {Voskresenskaya, Galina V.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {table of finite subgroups of ; representations of finite groups; multiplicative eta products; groups of order 24; dihedral groups; Hecke theta series; identities},
language = {eng},
number = {1},
pages = {247-262},
publisher = {Université Bordeaux I},
title = {One special class of modular forms and group representations},
url = {http://eudml.org/doc/248341},
volume = {11},
year = {1999},
}
TY - JOUR
AU - Voskresenskaya, Galina V.
TI - One special class of modular forms and group representations
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 247
EP - 262
AB - In this article we consider one special class of modular forms which are products of Dedekind $\eta $-functions and the relationships between these functions and representations of finite groups.
LA - eng
KW - table of finite subgroups of ; representations of finite groups; multiplicative eta products; groups of order 24; dihedral groups; Hecke theta series; identities
UR - http://eudml.org/doc/248341
ER -
References
top- [1] G. Mason, M24 and certain automorphic forms. Contemp. Math.45 (1985), 223-244. Zbl0578.10029MR822240
- [2] G. Mason, Finite groups and Hecke operators. Math.Ann.283 (1989), 381-409. Zbl0636.10021MR985239
- [3] D. Dummit, H. Kisilevsky, J. McKay, Multiplicative products of η-functions. Contemp. Math.45 (1985), 89-98. Zbl0578.10028
- [4] T. Hiramatsu, Theory of automorphic forms of weight 1. Adv. Stud. Pure Math.13 (1988), 503-584. Zbl0658.10031MR971528
- [5] M. Koike, Higher reciprocity law, modular forms of weight 1 and elliptic curves. Nagoya Math.J.98 (1985), 109-115. Zbl0569.12007MR792775
- [6] M. Koike, On McKay's conjecture. Nagoya Math.J.95 (1984), 85-89. Zbl0548.10018MR759465
- [7] G. Ligozat, Courbes modulaires de gendre 1. Bull. Soc. Math. France43 (1975), 80 pp. Zbl0322.14011MR417060
- [8] I.G. MacDonald, Affine systems of roots and the Dedekind η-function. Sb. Perev. Mat.16 (1972), 3-49. Zbl0253.17009
- [9] H.S.M. Coxeter, W.O.J. Mozer, Generators and relations for discrete groups. Second edition, Band 14Springer-Verlag, Berlin-Göttingen- New York1965ix+161 pp. Zbl0133.28002MR174618
- [10] G. Shimura, An introduction to the arithmetic theory of automorphic functions. Kanô Memorial Lectures, No. 1. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. xiv+267 pp. Zbl0221.10029MR314766
- [11] T. Kondo, Examples of multiplicative η- products. Sci. Pap. Coll. Arts and Sci. Univ. Tokyo. 35 (1986), 133-149. Zbl0597.10025
- [12] G.V. Voskresenskaya, Modular forms and group representations. Matem. Zametki52 (1992), 25-31. Zbl0771.11022MR1187709
- [13] G.V. Voskresenskaya, Cusp forms and finite subgroups in SL(5, C). Fun. anal. and appl.29 (1995), 71-73. Zbl0847.11022MR1340307
- [14] G.V. Voskresenskaya, Modular forms and regular representations of groups of order 24. Matem. Zametki60 (1996), 292-294. Zbl0923.11069MR1429128
- [15] G.V. Voskresenskaya, Modular forms and the representations of dihedral groups. Matem. Zametki63 (1998), 130-133. Zbl0923.11070MR1631789
- [16] G.V. Voskresenskaya, Hypercomplex numbers, root systems and modular forms, "Arithmetic and geometry of varieties" . Samara, (1992), 48-59. Zbl0798.11011MR1265721
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.