One special class of modular forms and group representations

Galina V. Voskresenskaya

Journal de théorie des nombres de Bordeaux (1999)

  • Volume: 11, Issue: 1, page 247-262
  • ISSN: 1246-7405

Abstract

top
In this article we consider one special class of modular forms which are products of Dedekind η -functions and the relationships between these functions and representations of finite groups.

How to cite

top

Voskresenskaya, Galina V.. "One special class of modular forms and group representations." Journal de théorie des nombres de Bordeaux 11.1 (1999): 247-262. <http://eudml.org/doc/248341>.

@article{Voskresenskaya1999,
abstract = {In this article we consider one special class of modular forms which are products of Dedekind $\eta $-functions and the relationships between these functions and representations of finite groups.},
author = {Voskresenskaya, Galina V.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {table of finite subgroups of ; representations of finite groups; multiplicative eta products; groups of order 24; dihedral groups; Hecke theta series; identities},
language = {eng},
number = {1},
pages = {247-262},
publisher = {Université Bordeaux I},
title = {One special class of modular forms and group representations},
url = {http://eudml.org/doc/248341},
volume = {11},
year = {1999},
}

TY - JOUR
AU - Voskresenskaya, Galina V.
TI - One special class of modular forms and group representations
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 247
EP - 262
AB - In this article we consider one special class of modular forms which are products of Dedekind $\eta $-functions and the relationships between these functions and representations of finite groups.
LA - eng
KW - table of finite subgroups of ; representations of finite groups; multiplicative eta products; groups of order 24; dihedral groups; Hecke theta series; identities
UR - http://eudml.org/doc/248341
ER -

References

top
  1. [1] G. Mason, M24 and certain automorphic forms. Contemp. Math.45 (1985), 223-244. Zbl0578.10029MR822240
  2. [2] G. Mason, Finite groups and Hecke operators. Math.Ann.283 (1989), 381-409. Zbl0636.10021MR985239
  3. [3] D. Dummit, H. Kisilevsky, J. McKay, Multiplicative products of η-functions. Contemp. Math.45 (1985), 89-98. Zbl0578.10028
  4. [4] T. Hiramatsu, Theory of automorphic forms of weight 1. Adv. Stud. Pure Math.13 (1988), 503-584. Zbl0658.10031MR971528
  5. [5] M. Koike, Higher reciprocity law, modular forms of weight 1 and elliptic curves. Nagoya Math.J.98 (1985), 109-115. Zbl0569.12007MR792775
  6. [6] M. Koike, On McKay's conjecture. Nagoya Math.J.95 (1984), 85-89. Zbl0548.10018MR759465
  7. [7] G. Ligozat, Courbes modulaires de gendre 1. Bull. Soc. Math. France43 (1975), 80 pp. Zbl0322.14011MR417060
  8. [8] I.G. MacDonald, Affine systems of roots and the Dedekind η-function. Sb. Perev. Mat.16 (1972), 3-49. Zbl0253.17009
  9. [9] H.S.M. Coxeter, W.O.J. Mozer, Generators and relations for discrete groups. Second edition, Band 14Springer-Verlag, Berlin-Göttingen- New York1965ix+161 pp. Zbl0133.28002MR174618
  10. [10] G. Shimura, An introduction to the arithmetic theory of automorphic functions. Kanô Memorial Lectures, No. 1. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. xiv+267 pp. Zbl0221.10029MR314766
  11. [11] T. Kondo, Examples of multiplicative η- products. Sci. Pap. Coll. Arts and Sci. Univ. Tokyo. 35 (1986), 133-149. Zbl0597.10025
  12. [12] G.V. Voskresenskaya, Modular forms and group representations. Matem. Zametki52 (1992), 25-31. Zbl0771.11022MR1187709
  13. [13] G.V. Voskresenskaya, Cusp forms and finite subgroups in SL(5, C). Fun. anal. and appl.29 (1995), 71-73. Zbl0847.11022MR1340307
  14. [14] G.V. Voskresenskaya, Modular forms and regular representations of groups of order 24. Matem. Zametki60 (1996), 292-294. Zbl0923.11069MR1429128
  15. [15] G.V. Voskresenskaya, Modular forms and the representations of dihedral groups. Matem. Zametki63 (1998), 130-133. Zbl0923.11070MR1631789
  16. [16] G.V. Voskresenskaya, Hypercomplex numbers, root systems and modular forms, "Arithmetic and geometry of varieties" . Samara, (1992), 48-59. Zbl0798.11011MR1265721

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.