Function spaces in the Stegall class

Ivaylo S. Kortezov

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 2, page 259-270
  • ISSN: 0010-2628

Abstract

top
We prove several stability properties for the class of compact Hausdorff spaces T such that C ( T ) with the weak or the pointwise topology is in the class of Stegall. In particular, this class is closed under arbitrary products.

How to cite

top

Kortezov, Ivaylo S.. "Function spaces in the Stegall class." Commentationes Mathematicae Universitatis Carolinae 40.2 (1999): 259-270. <http://eudml.org/doc/248378>.

@article{Kortezov1999,
abstract = {We prove several stability properties for the class of compact Hausdorff spaces $T$ such that $C(T)$ with the weak or the pointwise topology is in the class of Stegall. In particular, this class is closed under arbitrary products.},
author = {Kortezov, Ivaylo S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {usco mapping; minimal mapping; Stegall class; spaces of continuous functions; set-valued mapping; Stegall class; minimal upper semicontinuous mapping; stability properties},
language = {eng},
number = {2},
pages = {259-270},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Function spaces in the Stegall class},
url = {http://eudml.org/doc/248378},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Kortezov, Ivaylo S.
TI - Function spaces in the Stegall class
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 2
SP - 259
EP - 270
AB - We prove several stability properties for the class of compact Hausdorff spaces $T$ such that $C(T)$ with the weak or the pointwise topology is in the class of Stegall. In particular, this class is closed under arbitrary products.
LA - eng
KW - usco mapping; minimal mapping; Stegall class; spaces of continuous functions; set-valued mapping; Stegall class; minimal upper semicontinuous mapping; stability properties
UR - http://eudml.org/doc/248378
ER -

References

top
  1. Arhangel'skii A.V., Ponomarev V.I., Osnovy Obshchei Topologii v Zadachah i Uprazhneniah (in Russian), Moskva, 1974. MR0445439
  2. Bouziad A., Une classe d'espaces co-Namioka, C.R. de l'Acad. des Sci., Paris, t.310, série I, 1990, pp.779-782. MR1054296
  3. Bouziad A., The class of co-Namioka compact spaces is stable under product, Proc. Amer. Math. Soc. 194 3 (1996), 983-986. (1996) Zbl0844.54016MR1326999
  4. Fabian M., Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces, John Wiley & Sons, Inc., 1997. Zbl0883.46011MR1461271
  5. Jayne J.E., Rogers C.A., Borel selectors for upper semi-continuous set-valued maps, Acta Math. 56 (1985), 41-7. (1985) Zbl0588.54020MR0793237
  6. Kenderov P.S., Orihuela J., A generic factorization theorem, Mathematika 42 (1995), 56-66. (1995) Zbl0827.54012MR1346672
  7. Kortezov I.S., Fragmentability of function spaces, preprint. 
  8. Oxtoby J.O., The Banach-Mazur game and Baire category theorem, in: Contributions to the Theory of Games, vol.III, Annals of Math. Studies 39, Princeton, N.J., 1957, pp.159-163. MR0093741
  9. Stegall Ch., A class of topological spaces and differentiability, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen 10 (1983), 63-77. (1983) MR0730947

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.